# \donttest{
## generate swiss roll with auxiliary dimensions
## it follows reference example from LSIR paper.
set.seed(100)
n = 123
theta = runif(n)
h = runif(n)
t = (1+2*theta)*(3*pi/2)
X = array(0,c(n,10))
X[,1] = t*cos(t)
X[,2] = 21*h
X[,3] = t*sin(t)
X[,4:10] = matrix(runif(7*n), nrow=n)
## corresponding response vector
y = sin(5*pi*theta)+(runif(n)*sqrt(0.1))
## try different regularization parameters
out1 = do.enet(X, y, lambda1=0.01)
out2 = do.enet(X, y, lambda1=1)
out3 = do.enet(X, y, lambda1=100)
## extract embeddings
Y1 = out1$Y; Y2 = out2$Y; Y3 = out3$Y
## visualize
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,3))
plot(Y1, pch=19, main="ENET::lambda1=0.01")
plot(Y2, pch=19, main="ENET::lambda1=1")
plot(Y3, pch=19, main="ENET::lambda1=100")
par(opar)
# }
Run the code above in your browser using DataLab