Learn R Programming

Rdimtools (version 1.1.2)

do.mvp: Maximum Variance Projection

Description

Maximum Variance Projection (MVP) is a supervised method based on linear discriminant analysis (LDA). In addition to classical LDA, it further aims at preserving local information by capturing the local geometry of the manifold via the following proximity coding, $$S_{ij} = 1\quad\textrm{if}\quad C_i \ne C_j\quad\textrm{and} = 0 \quad\textrm{otherwise}$$, where \(C_i\) is the label of an \(i\)-th data point.

Usage

do.mvp(X, label, ndim = 2)

Value

a named Rdimtools S3 object containing

Y

an \((n\times ndim)\) matrix whose rows are embedded observations.

projection

a \((p\times ndim)\) whose columns are basis for projection.

algorithm

name of the algorithm.

Arguments

X

an \((n\times p)\) matrix or data frame whose rows are observations and columns represent independent variables.

label

a length-\(n\) vector of data class labels.

ndim

an integer-valued target dimension.

Author

Kisung You

References

zhang_maximum_2007Rdimtools

Examples

Run this code
# \donttest{
## use iris data
data(iris)
set.seed(100)
subid = sample(1:150, 50)
X     = as.matrix(iris[subid,1:4])
label = as.factor(iris[subid,5])

## perform MVP and compare with others
outMVP = do.mvp(X, label)
outPCA = do.pca(X)
outLDA = do.lda(X, label)

## visualize
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,3))
plot(outMVP$Y, col=label, pch=19, main="MVP")
plot(outPCA$Y, col=label, pch=19, main="PCA")
plot(outLDA$Y, col=label, pch=19, main="LDA")
par(opar)
# }

Run the code above in your browser using DataLab