# \donttest{
## use iris data
## it is known that feature 3 and 4 are more important.
data(iris)
set.seed(100)
subid <- sample(1:150, 50)
iris.dat <- as.matrix(iris[subid,1:4])
iris.lab <- as.factor(iris[subid,5])
## compare with other methods
out1 = do.pfa(iris.dat)
out2 = do.lscore(iris.dat)
out3 = do.fscore(iris.dat, iris.lab)
## visualize
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,3))
plot(out1$Y, pch=19, col=iris.lab, main="Principal Feature Analysis")
plot(out2$Y, pch=19, col=iris.lab, main="Laplacian Score")
plot(out3$Y, pch=19, col=iris.lab, main="Fisher Score")
par(opar)
# }
Run the code above in your browser using DataLab