## generate data of 3 types with clear difference
set.seed(100)
dt1 = aux.gensamples(n=33)-50
dt2 = aux.gensamples(n=33)
dt3 = aux.gensamples(n=33)+50
## merge the data and create a label correspondingly
X = rbind(dt1,dt2,dt3)
label = rep(1:3, each=33)
## copy a label and let 20% of elements be missing
nlabel = length(label)
nmissing = round(nlabel*0.20)
label_missing = label
label_missing[sample(1:nlabel, nmissing)]=NA
## try different balancing
out1 = do.sammc(X, label_missing, beta=0.1)
out2 = do.sammc(X, label_missing, beta=1)
out3 = do.sammc(X, label_missing, beta=10)
## visualize
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,3))
plot(out1$Y, pch=19, col=label, main="SAMMC::beta=0.1")
plot(out2$Y, pch=19, col=label, main="SAMMC::beta=1")
plot(out3$Y, pch=19, col=label, main="SAMMC::beta=10")
par(opar)
Run the code above in your browser using DataLab