## generate swiss roll with auxiliary dimensions
## it follows reference example from LSIR paper.
set.seed(100)
n = 50
theta = runif(n)
h = runif(n)
t = (1+2*theta)*(3*pi/2)
X = array(0,c(n,10))
X[,1] = t*cos(t)
X[,2] = 21*h
X[,3] = t*sin(t)
X[,4:10] = matrix(runif(7*n), nrow=n)
## corresponding response vector
y = sin(5*pi*theta)+(runif(n)*sqrt(0.1))
## try with different numbers of slices
out1 = do.sir(X, y, h=2)
out2 = do.sir(X, y, h=5)
out3 = do.sir(X, y, h=10)
## visualize
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,3))
plot(out1$Y, main="SIR::2 slices")
plot(out2$Y, main="SIR::5 slices")
plot(out3$Y, main="SIR::10 slices")
par(opar)
Run the code above in your browser using DataLab