Learn R Programming

Rdimtools (version 1.1.2)

do.sir: Sliced Inverse Regression

Description

Sliced Inverse Regression (SIR) is a supervised linear dimension reduction technique. Unlike engineering-driven methods, SIR takes a concept of central subspace, where conditional independence after projection is guaranteed. It first divides the range of response variable. Projection vectors are extracted where projected data best explains response variable.

Usage

do.sir(
  X,
  response,
  ndim = 2,
  h = max(2, round(nrow(X)/5)),
  preprocess = c("center", "scale", "cscale", "decorrelate", "whiten")
)

Value

a named list containing

Y

an \((n\times ndim)\) matrix whose rows are embedded observations.

trfinfo

a list containing information for out-of-sample prediction.

projection

a \((p\times ndim)\) whose columns are basis for projection.

Arguments

X

an \((n\times p)\) matrix or data frame whose rows are observations and columns represent independent variables.

response

a length-\(n\) vector of response variable.

ndim

an integer-valued target dimension.

h

the number of slices to divide the range of response vector.

preprocess

an additional option for preprocessing the data. Default is "center". See also aux.preprocess for more details.

Author

Kisung You

References

li_sliced_1991Rdimtools

Examples

Run this code
## generate swiss roll with auxiliary dimensions
## it follows reference example from LSIR paper.
set.seed(100)
n = 50
theta = runif(n)
h     = runif(n)
t     = (1+2*theta)*(3*pi/2)
X     = array(0,c(n,10))
X[,1] = t*cos(t)
X[,2] = 21*h
X[,3] = t*sin(t)
X[,4:10] = matrix(runif(7*n), nrow=n)

## corresponding response vector
y = sin(5*pi*theta)+(runif(n)*sqrt(0.1))

## try with different numbers of slices
out1 = do.sir(X, y, h=2)
out2 = do.sir(X, y, h=5)
out3 = do.sir(X, y, h=10)

## visualize
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,3))
plot(out1$Y, main="SIR::2 slices")
plot(out2$Y, main="SIR::5 slices")
plot(out3$Y, main="SIR::10 slices")
par(opar)

Run the code above in your browser using DataLab