Learn R Programming

Rdimtools (version 1.1.2)

do.ulda: Uncorrelated Linear Discriminant Analysis

Description

Uncorrelated LDA jin_face_2001Rdimtools is an extension of LDA by using the uncorrelated discriminant transformation and Kahrunen-Loeve expansion of the basis.

Usage

do.ulda(
  X,
  label,
  ndim = 2,
  preprocess = c("center", "scale", "cscale", "whiten", "decorrelate")
)

Value

a named list containing

Y

an \((n\times ndim)\) matrix whose rows are embedded observations.

trfinfo

a list containing information for out-of-sample prediction.

projection

a \((p\times ndim)\) whose columns are basis for projection.

Arguments

X

an \((n\times p)\) matrix or data frame whose rows are observations and columns represent independent variables.

label

a length-\(n\) vector of data class labels.

ndim

an integer-valued target dimension.

preprocess

an additional option for preprocessing the data. Default is "center". See also aux.preprocess for more details.

Author

Kisung You

References

See Also

do.lda

Examples

Run this code
## load iris data
data(iris)
set.seed(100)
subid = sample(1:150,50)
X     = as.matrix(iris[subid,1:4])
label = as.factor(iris[subid,5])

## compare with LDA
out1 = do.lda(X, label)
out2 = do.ulda(X, label)

## visualize
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,2))
plot(out1$Y, pch=19, col=label, main="LDA")
plot(out2$Y, pch=19, col=label, main="Uncorrelated LDA")
par(opar)

Run the code above in your browser using DataLab