Learn R Programming

Rdistance (version 3.0.0)

AIC.dfunc: AICc and related fit statistics for detection function objects

Description

Computes AICc, AIC, or BIC for estimated distance functions.

Usage

# S3 method for dfunc
AIC(object, ..., criterion = "AICc")

Value

A scalar. By default, the value of AICc for the estimated distance function obj.

Arguments

object

An estimated detection function object. An estimated detection function object has class 'dfunc', and is usually produced by a call to dfuncEstim.

...

Required for compatibility with the general AIC method. Any extra arguments to this function are ignored.

criterion

String specifying the criterion to compute. Either "AICc", "AIC", or "BIC".

Details

Regular Akaike's information criterion (https://en.wikipedia.org/wiki/Akaike_information_criterion) (\(AIC\)) is $$AIC = LL + 2p,$$ where \(LL\) is the maximized value of the log likelihood (the minimized value of the negative log likelihood) and \(p\) is the number of coefficients estimated in the detection function. For dfunc objects, \(AIC\) = obj$loglik + 2*length(coef(obj)).

A correction for small sample size, \(AIC_c\), is $$AIC_c = LL + 2p + \frac{2p(p+1)}{n-p-1},$$ where \(n\) is sample size or number of detected groups for distance analyses. By default, this function computes \(AIC_c\). \(AIC_c\) converges quickly to \(AIC\) as \(n\) increases.

The Bayesian Information Criterion (BIC) is $$BIC = LL + log(n)p,$$.

References

Burnham, K. P., and D. R. Anderson, 2002. Model selection and multi-model inference: A practical information-theoretic approach, Second ed. Springer-Verlag. ISBN 0-387-95364-7.

McQuarrie, A. D. R., and Tsai, C.-L., 1998. Regression and time series model selection. World Scientific. ISBN 981023242X

See Also

coef, dfuncEstim

Examples

Run this code
  data(sparrowDetectionData)
  dfunc <- dfuncEstim(dist~1,
                      detectionData=sparrowDetectionData, 
                      w.hi=units::set_units(150, "m"))
  
  # Compute fit statistics
  AIC(dfunc)  # AICc
  AIC(dfunc, criterion="AIC")  # AIC
  AIC(dfunc, criterion="BIC")  # BIC

Run the code above in your browser using DataLab