data("sparrowDf")
# For dimension checks:
nd <- getOption("Rdistance_intEvalPts")
# No covariates
dfuncObs <- sparrowDf |> dfuncEstim(formula = dist ~ 1
, w.hi = units::as_units(100, "m"))
n <- nrow(dfuncObs$mf)
p <- predict(dfuncObs) # parameters
all(dim(p) == c(n, 1))
# values in newdata ignored because no covariates
p <- predict(dfuncObs, newdata = data.frame(x = 1:5))
all(dim(p) == c(5, 1))
# Distance functions in columns, one per observation
p <- predict(dfuncObs, type = "dfunc")
all(dim(p) == c(nd, n))
d <- units::set_units(c(0, 20, 40), "ft")
p <- predict(dfuncObs, distances = d, type = "dfunc")
all(dim(p) == c(3, n))
p <- predict(dfuncObs
, newdata = data.frame(x = 1:5)
, distances = d
, type = "dfunc")
all(dim(p) == c(3, 5))
# Covariates
data(sparrowDfuncObserver) # pre-estimated object
if (FALSE) {
# Command to generate 'sparrowDfuncObserver'
sparrowDfuncObserver <- sparrowDf |>
dfuncEstim(formula = dist ~ observer
, likelihood = "hazrate")
}
predict(sparrowDfuncObserver) # n X 2
Observers <- data.frame(observer = levels(sparrowDf$observer))
predict(sparrowDfuncObserver, newdata = Observers) # 5 X 2
predict(sparrowDfuncObserver, type = "dfunc") # nd X n
predict(sparrowDfuncObserver, newdata = Observers, type = "dfunc") # nd X 5
d <- units::set_units(c(0, 150, 400), "ft")
predict(sparrowDfuncObserver
, newdata = Observers
, distances = d
, type = "dfunc") # 3 X 5
# Density and abundance by transect
predict(sparrowDfuncObserver
, type = "density")
Run the code above in your browser using DataLab