Computes bias-reduced ML estimates of gamma based on the quantile view.
Hill.2oQV(data, start = c(1,1,1), warnings = FALSE, logk = FALSE,
plot = FALSE, add = FALSE, main = "Estimates of the EVI", ...)
Vector of \(n\) observations.
A vector of length 3 containing starting values for the first numerical optimisation (see Details). The elements
are the starting values for the estimators of \(\gamma\), \(\mu\) and \(\sigma\), respectively. Default is c(1,1,1)
.
Logical indicating if possible warnings from the optimisation function are shown, default is FALSE
.
Logical indicating if the estimates are plotted as a function of \(\log(k)\) (logk=TRUE
) or as a function of \(k\). Default is FALSE
.
Logical indicating if the estimates of \(\gamma\) should be plotted as a function of \(k\), default is FALSE
.
Logical indicating if the estimates of \(\gamma\) should be added to an existing plot, default is FALSE
.
Title for the plot, default is "Estimates of the EVI"
.
Additional arguments for the plot
function, see plot
for more details.
A list with following components:
Vector of the values of the tail parameter \(k\).
Vector of the ML estimates for the EVI for each value of \(k\).
Vector of the ML estimates for the parameter \(b\) in the regression model for each value of \(k\).
Vector of the ML estimates for the parameter \(\beta\) in the regression model for each value of \(k\).
See Section 4.2.1 of Albrecher et al. (2017) for more details.
Albrecher, H., Beirlant, J. and Teugels, J. (2017). Reinsurance: Actuarial and Statistical Aspects, Wiley, Chichester.
Beirlant J., Dierckx, G., Goegebeur Y. and Matthys, G. (1999). "Tail Index Estimation and an Exponential Regression Model." Extremes, 2, 177--200.
Beirlant J., Goegebeur Y., Segers, J. and Teugels, J. (2004). Statistics of Extremes: Theory and Applications, Wiley Series in Probability, Wiley, Chichester.
# NOT RUN {
data(norwegianfire)
# Plot bias-reduced MLE (QV) as a function of k
Hill.2oQV(norwegianfire$size[norwegianfire$year==76],plot=TRUE)
# }
Run the code above in your browser using DataLab