# Set seed for reproducibility
set.seed(38)
# Set the number of observations
n = 1000
# Generate predictor variables
X1 = rnorm(n)
X2 = rnorm(n)
X3 = rnorm(n)
# Define coefficients for each predictor
beta_0 = -1
beta_1 = 0.5
beta_2 = -0.25
beta_3 = 0.75
# Generate the latent variable
latent_variable = beta_0 + beta_1 * X1+ beta_2 * X2 + beta_3 * X3
# convert it to probabilities
p = pnorm(latent_variable)
# Generate binomial outcomes based on these probabilities
y = rbinom(n, size = 1, prob = p)
# Fit a GLM with a probit link
glm_model <- glm(y ~ X1 + X2 + X3, family = binomial(link = "probit"),
data = data.frame(y, X1, X2, X3))
# Specify additional parameters and Plot Odds Ratio for the Realized Effect
vis_reg(glm_model, CI=TRUE,intercept=TRUE,
palette=c("greenyellow","red4"))$RealizedEffectVis
Run the code above in your browser using DataLab