# Example 1
# Generating some random values with
# known mu, sigma and nu
y <- rGammaW(n=100, mu = 0.5, sigma = 2, nu=1)
# Fitting the model
require(gamlss)
mod <- gamlss(y~1, sigma.fo=~1, nu.fo=~1, family='GammaW',
control=gamlss.control(n.cyc=5000, trace=FALSE))
# Extracting the fitted values for mu, sigma and nu
# using the inverse link function
exp(coef(mod, what='mu'))
exp(coef(mod, what='sigma'))
exp(coef(mod, what='nu'))
# Example 2
# Generating random values under some model
n <- 200
x1 <- runif(n)
x2 <- runif(n)
mu <- exp(-1.6 * x1)
sigma <- exp(1.1 - 1 * x2)
nu <- 1
x <- rGammaW(n=n, mu, sigma, nu)
mod <- gamlss(x~x1, mu.fo=~x1, sigma.fo=~x2, nu.fo=~1, family=GammaW,
control=gamlss.control(n.cyc=50000, trace=FALSE))
coef(mod, what="mu")
coef(mod, what="sigma")
coef(mod, what='nu')
Run the code above in your browser using DataLab