Learn R Programming

RelDists (version 1.0.0)

dEOFNH: The Extended Odd Frechet-Nadarajah-Haghighi

Description

Density, distribution function, quantile function, random generation and hazard function for the Extended Odd Fr?chet-Nadarajah-Haghighi distribution with parameters mu, sigma, nu and tau.

Usage

dEOFNH(x, mu, sigma, nu, tau, log = FALSE)

pEOFNH(q, mu, sigma, nu, tau, lower.tail = TRUE, log.p = FALSE)

qEOFNH(p, mu, sigma, nu, tau, lower.tail = TRUE, log.p = FALSE)

rEOFNH(n, mu, sigma, nu, tau)

hEOFNH(x, mu, sigma, nu, tau)

Value

dEOFNH gives the density, pEOFNH gives the distribution function, qEOFNH gives the quantile function, rEOFNH

generates random numbers and hEOFNH gives the hazard function.

Arguments

x, q

vector of quantiles.

mu

parameter.

sigma

parameter.

nu

parameter.

tau

parameter.

log, log.p

logical; if TRUE, probabilities p are given as log(p).

lower.tail

logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x].

p

vector of probabilities.

n

number of observations.

Author

Helber Santiago Padilla

Details

Tthe Extended Odd Frechet-Nadarajah-Haghighi mu, sigma, nu and tau has density given by

\(f(x)= \frac{\mu\sigma\nu\tau(1+\nu x)^{\sigma-1}e^{(1-(1+\nu x)^\sigma)}[1-(1-e^{(1-(1+\nu x)^\sigma)})^{\mu}]^{\tau-1}}{(1-e^{(1-(1+\nu x)^{\sigma})})^{\mu\tau+1}} e^{-[(1-e^{(1-(1+\nu x)^\sigma)})^{-\mu}-1]^{\tau}},\)

for \(x > 0\), \(\mu > 0\), \(\sigma > 0\), \(\nu > 0\) and \(\tau > 0\).

References

nasiru2018extendedRelDists

Examples

Run this code
old_par <- par(mfrow = c(1, 1)) # save previous graphical parameters

##The probability density function
par(mfrow=c(1,1))
 curve(dEOFNH(x, mu=18.5, sigma=5.1, nu=0.1, tau=0.1), from=0, to=10,
     ylim=c(0, 0.25), col="red", las=1, ylab="f(x)")

## The cumulative distribution and the Reliability function
par(mfrow = c(1, 2))
curve(pEOFNH(x,mu=18.5, sigma=5.1, nu=0.1, tau=0.1), from = 0, to = 10, 
ylim = c(0, 1), col = "red", las = 1, ylab = "F(x)")
curve(pEOFNH(x, mu=18.5, sigma=5.1, nu=0.1, tau=0.1, lower.tail = FALSE), 
from = 0, to = 10, ylim = c(0, 1), col = "red", las = 1, ylab = "R(x)")

##The quantile function
p <- seq(from=0, to=0.99999, length.out=100)
plot(x=qEOFNH(p, mu=18.5, sigma=5.1, nu=0.1, tau=0.1), y=p, xlab="Quantile",
     las=1, ylab="Probability")
curve(pEOFNH(x, mu=18.5, sigma=5.1, nu=0.1, tau=0.1), from=0, add=TRUE, col="red")

##The random function
hist(rEOFNH(n=10000, mu=18.5, sigma=5.1, nu=0.1, tau=0.1), freq=FALSE,
     xlab="x", las=1, main="")
curve(dEOFNH(x, mu=18.5, sigma=5.1, nu=0.1, tau=0.1), from=0, add=TRUE, col="red", ylim=c(0,1.25))

##The Hazard function
par(mfrow=c(1,1))
curve(hEOFNH(x, mu=18.5, sigma=5.1, nu=0.1, tau=0.1), from=0, to=10, ylim=c(0, 1),
     col="red", ylab="Hazard function", las=1)

par(old_par) # restore previous graphical parameters

Run the code above in your browser using DataLab