Learn R Programming

RelDists (version 1.0.0)

dKumIW: The Kumaraswamy Inverse Weibull distribution

Description

Density, distribution function, quantile function, random generation and hazard function for the Kumaraswamy Inverse Weibull distribution with parameters mu, sigma and nu.

Usage

dKumIW(x, mu, sigma, nu, log = FALSE)

pKumIW(q, mu, sigma, nu, lower.tail = TRUE, log.p = FALSE)

qKumIW(p, mu, sigma, nu, lower.tail = TRUE, log.p = FALSE)

rKumIW(n, mu, sigma, nu)

hKumIW(x, mu, sigma, nu)

Value

dKumIW gives the density, pKumIW gives the distribution function, qKumIW gives the quantile function, rKumIW

generates random deviates and hKumIW gives the hazard function.

Arguments

x, q

vector of quantiles.

mu

parameter.

sigma

parameter.

nu

parameter.

log, log.p

logical; if TRUE, probabilities p are given as log(p).

lower.tail

logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x].

p

vector of probabilities.

n

number of observations.

Author

Johan David Marin Benjumea, johand.marin@udea.edu.co

Details

The Kumaraswamy Inverse Weibull Distribution with parameters mu, sigma and nu has density given by

\(f(x)= \mu \sigma \nu x^{-\mu - 1} \exp{- \sigma x^{-\mu}} (1 - \exp{- \sigma x^{-\mu}})^{\nu - 1},\)

for \(x > 0\), \(\mu > 0\), \(\sigma > 0\) and \(\nu > 0\).

References

almalki2014modificationsRelDists

shahbaz2012kumaraswamyRelDists

Examples

Run this code
old_par <- par(mfrow = c(1, 1)) # save previous graphical parameters

## The probability density function 
par(mfrow = c(1, 1))
curve(dKumIW(x, mu = 1.5, sigma=  1.5, nu = 1), from = 0, to = 8.5, 
      col = "red", las = 1, ylab = "f(x)")

## The cumulative distribution and the Reliability function
par(mfrow = c(1, 2))
curve(pKumIW(x, mu = 1.5, sigma=  1.5, nu = 1), from = 0, to = 8.5, 
      ylim = c(0, 1), col = "red", las = 1, ylab = "F(x)")
curve(pKumIW(x, mu = 1.5, sigma=  1.5, nu = 1, lower.tail = FALSE), 
      from = 0, to = 6, ylim = c(0, 1), col = "red", las = 1, ylab = "R(x)")

## The quantile function
p <- seq(from = 0, to = 0.99999, length.out = 100)
plot(x = qKumIW(p=p, mu = 1.5, sigma=  1.5, nu = 10), y = p, 
     xlab = "Quantile", las = 1, ylab = "Probability")
curve(pKumIW(x, mu = 1.5, sigma=  1.5, nu = 10), from = 0, add = TRUE, 
      col = "red")

## The random function
hist(rKumIW(1000, mu = 1.5, sigma=  1.5, nu = 5), freq = FALSE, xlab = "x", 
     las = 1, ylim = c(0, 1.5), main = "")
curve(dKumIW(x, mu = 1.5, sigma=  1.5, nu = 5), from = 0, to =8, add = TRUE, 
      col = "red")

## The Hazard function
par(mfrow=c(1,1))
curve(hKumIW(x, mu = 1.5, sigma=  1.5, nu = 1), from = 0, to = 3, 
      ylim = c(0, 0.7), col = "red", ylab = "Hazard function", las = 1)

par(old_par) # restore previous graphical parameters

Run the code above in your browser using DataLab