Learn R Programming

RelDists (version 1.0.0)

dWP: The Weibull Poisson distribution

Description

Density, distribution function, quantile function, random generation and hazard function for the Weibull Poisson distribution with parameters mu, sigma and nu.

Usage

dWP(x, mu, sigma, nu, log = FALSE)

pWP(q, mu, sigma, nu, lower.tail = TRUE, log.p = FALSE)

qWP(p, mu, sigma, nu, lower.tail = TRUE, log.p = FALSE)

rWP(n, mu, sigma, nu)

hWP(x, mu, sigma, nu)

Value

dWP gives the density, pWP gives the distribution function, qWP gives the quantile function, rWP

generates random deviates and hWP gives the hazard function.

Arguments

x, q

vector of quantiles.

mu

parameter.

sigma

parameter.

nu

parameter.

log, log.p

logical; if TRUE, probabilities p are given as log(p).

lower.tail

logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x].

p

vector of probabilities.

n

number of observations.

Author

Amylkar Urrea Montoya, amylkar.urrea@udea.edu.co

Details

The Weibull Poisson distribution with parameters mu, sigma and nu has density given by

\(f(x) = \frac{\mu \sigma \nu e^{-\nu}} {1-e^{-\nu}} x^{\mu-1} exp({-\sigma x^{\mu}+\nu exp({-\sigma} x^{\mu}) }),\)

for x > 0.

References

almalki2014modificationsRelDists

Wanbo2012RelDists

Examples

Run this code
old_par <- par(mfrow = c(1, 1)) # save previous graphical parameters

## The probability density function
curve(dWP(x, mu=1.5, sigma=0.5, nu=10), from=0.0001, to=2,
      col="red", las=1, ylab="f(x)")

## The cumulative distribution and the Reliability function
par(mfrow=c(1, 2))
curve(pWP(x, mu=1.5, sigma=0.5, nu=10),
      from=0.0001, to=2, col="red", las=1, ylab="F(x)")
curve(pWP(x, mu=1.5, sigma=0.5, nu=10, lower.tail=FALSE),
      from=0.0001, to=2, col="red", las=1, ylab="R(x)")

## The quantile function
p <- seq(from=0, to=0.99999, length.out=100)
plot(x=qWP(p, mu=1.5, sigma=0.5, nu=10), y=p, xlab="Quantile",
     las=1, ylab="Probability")
curve(pWP(x, mu=1.5, sigma=0.5, nu=10),
      from=0, add=TRUE, col="red")

## The random function
hist(rWP(n=10000, mu=1.5, sigma=0.5, nu=10), freq=FALSE,
     xlab="x", ylim=c(0, 2.2), las=1, main="")
curve(dWP(x, mu=1.5, sigma=0.5, nu=10),
      from=0.001, to=4, add=TRUE, col="red")

## The Hazard function
curve(hWP(x, mu=1.5, sigma=0.5, nu=10), from=0.001, to=5,
      col="red", ylab="Hazard function", las=1)

par(old_par) # restore previous graphical parameters

Run the code above in your browser using DataLab