Learn R Programming

Rfit (version 0.09)

Rfit-package: Rank-Based Estimates and Inference for Linear Models

Description

Package provides functions for rank-based analyses of linear models. Rank-based estimation and inference offers a robust alternative to least squares.

Arguments

Details

ll{ Package: Rfit Type: Package Version: 0.08 Date: 2010-01-11 License: GPL (version 2 or later) LazyLoad: yes }

References

Hettmansperger, T.P. and McKean J.W. (1998), Robust Nonparametric Statistical Methods, London: Arnold.

Jaeckel, L. A. (1972). Estimating regression coefficients by minimizing the dispersion of residuals. Annal s of Mathematical Statistics, 43, 1449 - 1458.

Jureckova, J. (1971). Nonparametric estimate of regression coefficients. Annals of Mathematical Statistics, 42, 1328 - 1338.

Examples

Run this code
data(baseball)
data(wscores)
fit<-rfit(weight~height,data=baseball)
summary(fit)
plot(fitted(fit),rstudent(fit))

### Example of the Reduction (Drop) in dispersion test ###
y<-rnorm(47)
x1<-rnorm(47)
x2<-rnorm(47)
fitF<-rfit(y~x1+x2)
fitR<-rfit(y~x1)
drop.test(fitF,fitR)

Run the code above in your browser using DataLab