MultinomialModel
] class using new/initialize.Initialization method. Used internally in the `Rmixmod' package.
Initialization method. Used internally in the `Rmixmod' package.
Initialization method. Used internally in the `Rmixmod' package.
Initialization method. Used internally in the `Rmixmod' package.
Initialization method. Used internally in the `Rmixmod' package.
Initialization method. Used internally in the `Rmixmod' package.
Initialization method. Used internally in the `Rmixmod' package.
Initialization method. Used internally in the `Rmixmod' package.
# S4 method for MultinomialModel
initialize(
.Object,
listModels,
free.proportions,
equal.proportions,
variable.independency,
component.independency
)# S4 method for GaussianModel
initialize(.Object, listModels, family, free.proportions, equal.proportions)
# S4 method for CompositeModel
initialize(
.Object,
listModels,
free.proportions,
equal.proportions,
variable.independency,
component.independency
)
# S4 method for Mixmod
initialize(
.Object,
data,
dataType,
models,
weight,
knownLabels,
xmlIn,
xmlOut,
seed,
trace,
massiccc
)
# S4 method for Strategy
initialize(
.Object,
algo,
nbTry,
initMethod,
nbTryInInit,
nbIterationInInit,
nbIterationInAlgo,
epsilonInInit,
epsilonInAlgo,
seed,
parameter,
labels
)
# S4 method for MixmodCluster
initialize(
.Object,
data = NULL,
nbCluster = NULL,
dataType = NULL,
models = NULL,
strategy = NULL,
criterion = NULL,
weight = NULL,
knownLabels = NULL,
seed = -1,
xmlIn = NULL,
xmlOut = NULL,
trace = 0,
massiccc = 0
)
# S4 method for MixmodLearn
initialize(
.Object,
data = NULL,
knownLabels = NULL,
dataType = NULL,
models = NULL,
criterion = "CV",
nbCVBlocks = 10,
weight = NULL,
seed = -1,
xmlIn = NULL,
xmlOut = NULL,
trace = 0,
massiccc = 0
)
# S4 method for MixmodPredict
initialize(
.Object,
data,
classificationRule,
xmlIn = NULL,
xmlOut = NULL,
trace = 0,
massiccc = 0
)
initialize
initialize
initialize
initialize
initialize
initialize
initialize
initialize