CompositeModel
] classDefine a list of heterogeneous model to test in MIXMOD.
mixmodCompositeModel(
listModels = NULL,
free.proportions = TRUE,
equal.proportions = TRUE,
variable.independency = NULL,
component.independency = NULL
)
an object of [CompositeModel
] which contains some of the 40 heterogeneous Models:
Model | Prop. | Var. | Comp. | Volume | Shape |
Heterogeneous_p_E_L_B | Equal | TRUE | TRUE | Equal | Equal |
Heterogeneous_p_E_Lk_B | TRUE | TRUE | Free | Equal | |
Heterogeneous_p_E_L_Bk | TRUE | TRUE | Equal | Free | |
Heterogeneous_p_E_Lk_Bk | TRUE | TRUE | Free | Free | |
Heterogeneous_p_Ek_L_B | TRUE | FALSE | Equal | Equal | |
Heterogeneous_p_Ek_Lk_B | TRUE | FALSE | Free | Equal | |
Heterogeneous_p_Ek_L_Bk | TRUE | FALSE | Equal | Free | |
Heterogeneous_p_Ek_Lk_Bk | TRUE | FALSE | Free | Free | |
Heterogeneous_p_Ej_L_B | FALSE | TRUE | Equal | Equal | |
Heterogeneous_p_Ej_Lk_B | FALSE | TRUE | Free | Equal | |
Heterogeneous_p_Ej_L_Bk | FALSE | TRUE | Equal | Free | |
Heterogeneous_p_Ej_Lk_Bk | FALSE | TRUE | Free | Free | |
Heterogeneous_p_Ekj_L_B | FALSE | FALSE | Equal | Equal | |
Heterogeneous_p_Ekj_Lk_B | FALSE | FALSE | Free | Equal | |
Heterogeneous_p_Ekj_L_Bk | FALSE | FALSE | Equal | Free | |
Heterogeneous_p_Ekj_Lk_Bk | FALSE | FALSE | Free | Free | |
Heterogeneous_p_Ekjh_L_B | FALSE | FALSE | Equal | Equal | |
Heterogeneous_p_Ekjh_Lk_B | FALSE | FALSE | Free | Equal | |
Heterogeneous_p_Ekjh_L_Bk | FALSE | FALSE | Equal | Free | |
Heterogeneous_p_Ekjh_Lk_Bk | FALSE | FALSE | Free | Free | |
Heterogeneous_pk_E_L_B | Free | TRUE | TRUE | Equal | Equal |
Heterogeneous_pk_E_Lk_B | TRUE | TRUE | Free | Equal | |
Heterogeneous_pk_E_L_Bk | TRUE | TRUE | Equal | Free | |
Heterogeneous_pk_E_Lk_Bk | TRUE | TRUE | Free | Free | |
Heterogeneous_pk_Ek_L_B | TRUE | FALSE | Equal | Equal | |
Heterogeneous_pk_Ek_Lk_B | TRUE | FALSE | Free | Equal | |
Heterogeneous_pk_Ek_L_Bk | TRUE | FALSE | Equal | Free | |
Heterogeneous_pk_Ek_Lk_Bk | TRUE | FALSE | Free | Free | |
Heterogeneous_pk_Ej_L_B | FALSE | TRUE | Equal | Equal | |
Heterogeneous_pk_Ej_Lk_B | FALSE | TRUE | Free | Equal | |
Heterogeneous_pk_Ej_L_Bk | FALSE | TRUE | Equal | Free | |
Heterogeneous_pk_Ej_Lk_Bk | FALSE | TRUE | Free | Free | |
Heterogeneous_pk_Ekj_L_B | FALSE | FALSE | Equal | Equal | |
Heterogeneous_pk_Ekj_Lk_B | FALSE | FALSE | Free | Equal | |
Heterogeneous_pk_Ekj_L_Bk | FALSE | FALSE | Equal | Free | |
Heterogeneous_pk_Ekj_Lk_Bk | FALSE | FALSE | Free | Free | |
Heterogeneous_pk_Ekjh_L_B | FALSE | FALSE | Equal | Equal | |
Heterogeneous_pk_Ekjh_Lk_B | FALSE | FALSE | Free | Equal | |
Heterogeneous_pk_Ekjh_L_Bk | FALSE | FALSE | Equal | Free | |
Heterogeneous_pk_Ekjh_Lk_Bk | FALSE | FALSE | Free | Free |
a list of characters containing a list of models. It is optional.
logical to include models with free proportions. Default is TRUE.
logical to include models with equal proportions. Default is TRUE.
logical to include models where \([\varepsilon_k^j]\) is independent of the variable \(j\). Optional.
logical to include models where \([\varepsilon_k^j]\) is independent of the component \(k\). Optional.
Florent Langrognet and Remi Lebret and Christian Poli ans Serge Iovleff, with contributions from C. Biernacki and G. Celeux and G. Govaert contact@mixmod.org
In heterogeneous case, Gaussian model can only belong to the diagonal family. We assume that the variance matrices \(\Sigma_{k}\) are diagonal. In the parameterization, it means that the orientation matrices \(D_{k}\) are permutation matrices. We write \(\Sigma_{k}=\lambda_{k}B_{k}\) where \(B_{k}\) is a diagonal matrix with \(| B_{k}|=1\). This particular parameterization gives rise to 4 models: \([\lambda B]\), \([\lambda_{k}B]\), \([\lambda B_{k}]\) and \([\lambda_{k}B_{k}]\). The multinomial distribution is associated to the \(j\)th variable of the \(k\)th component is reparameterized by a center \(a_k^j\) and the dispersion \(\varepsilon_k^j\) around this center. Thus, it allows us to give an interpretation similar to the center and the variance matrix used for continuous data in the Gaussian mixture context. In the following, this model will be denoted by \([\varepsilon_k^j]\). In this context, three other models can be easily deduced. We note \([\varepsilon_k]\) the model where \(\varepsilon_k^j\) is independent of the variable \(j\), \([\varepsilon^j]\) the model where \(\varepsilon_k^j\) is independent of the component \(k\) and, finally, \([\varepsilon]\) the model where \(\varepsilon_k^j\) is independent of both the variable $j$ and the component \(k\). In order to maintain some unity in the notation, we will denote also \([\varepsilon_k^{jh}]\) the most general model introduced at the previous section.
C. Biernacki, G. Celeux, G. Govaert, F. Langrognet. "Model-Based Cluster and Discriminant Analysis with the MIXMOD Software". Computational Statistics and Data Analysis, vol. 51/2, pp. 587-600. (2006)
mixmodCompositeModel()
# composite models with equal proportions
mixmodCompositeModel(free.proportions = FALSE)
# composite models with equal proportions and independent of the variable
mixmodCompositeModel(free.proportions = FALSE, variable.independency = TRUE)
# composite models with a pre-defined list
mixmodCompositeModel(listModels = c("Heterogeneous_pk_Ekjh_L_Bk", "Heterogeneous_pk_Ekjh_Lk_B"))
Run the code above in your browser using DataLab