# start by extract 10 observations from iris data set
remaining.obs <- sample(1:nrow(iris), 10)
# then run a mixmodLearn() analysis without those 10 observations
learn <- mixmodLearn(iris[-remaining.obs, 1:4], iris$Species[-remaining.obs])
# create a MixmodPredict to predict those 10 observations
prediction <- mixmodPredict(
data = iris[remaining.obs, 1:4],
classificationRule = learn["bestResult"]
)
# show results
prediction
# compare prediction with real results
paste("accuracy= ", mean(as.integer(iris$Species[remaining.obs]) == prediction["partition"]) * 100,
"%",
sep = ""
)
## A composite example with a heterogeneous data set
data(heterodatatrain)
## Learning with training data
learn <- mixmodLearn(heterodatatrain[-1], knownLabels = heterodatatrain$V1)
Run the code above in your browser using DataLab