doX <- Rmpfr:::doExtras() # slow parts only if(doX)
cat("doExtras: ", doX, "\n")
p <- (0:32)/32
lp <- -c(1000, 500, 200, 100, 50, 20:1, 2^-(1:8))
if(doX) {
tol1 <- 2.3e-16
tolM <- 1e-20
tolRIlog <- 4e-14
} else { # use one more than a third of the points:
ip <- c(TRUE,FALSE, rep_len(c(TRUE,FALSE,FALSE), length(p)-2L))
p <- p[ip]
lp <- lp[ip]
tol1 <- 1e-9
tolM <- 1e-12
tolRIlog <- 25*tolM
}
f.all.eq <- function(a,b)
sub("^Mean relative difference:", '', format(all.equal(a, b, tol=0)))
for(logp in c(FALSE,TRUE)) {
pp <- if(logp) lp else p
mp <- mpfr(pp, precBits = if(doX) 80 else 64) # precBits = 128 gave "the same" as 80
for(l.tail in c(FALSE,TRUE)) {
qn <- qnorm (pp, lower.tail = l.tail, log.p = logp)
qnI <- qnormI(pp, lower.tail = l.tail, log.p = logp, tol = tol1)
qnM <- qnormI(mp, lower.tail = l.tail, log.p = logp, tol = tolM)
cat(sprintf("Accuracy of qnorm(*, lower.t=%-5s, log.p=%-5s): %s || qnI: %s\n",
l.tail, logp, f.all.eq(qnM, qn ),
f.all.eq(qnM, qnI)))
stopifnot(exprs = {
all.equal(qn, qnI, tol = if(logp) tolRIlog else 4*tol1)
all.equal(qnM, qnI, tol = tol1)
})
}
}
## useMpfr, using mpfr() :
if(doX) {
p2 <- 2^-c(1:27, 5*(6:20), 20*(6:15))
e2 <- 88
} else {
p2 <- 2^-c(1:2, 7, 77, 177, 307)
e2 <- 60
}
system.time( pn2 <- pnorm(qnormI(mpfr(p2, e2))) ) # 4.1 or 0.68
all.equal(p2, pn2, tol = 0) # 5.48e-29 // 5.2e-18
2^-e2
stopifnot(all.equal(p2, pn2, tol = 6 * 2^-e2)) # '4 *' needed
## Boundary -- from limits in mpfr maximal exponent range!
## 1) Use maximal ranges:
(old_eranges <- .mpfr_erange()) # typically -/+ 2^30
(myERng <- (1-2^-52) * .mpfr_erange(c("min.emin","max.emax")))
(doIncr <- !isTRUE(all.equal(unname(myERng), unname(old_eranges)))) # ==>
## TRUE only if long is 64-bit, i.e., *not* on Windows
if(doIncr) .mpfr_erange_set(value = myERng)
log2(abs(.mpfr_erange()))# 62 62 if(doIncr) i.e. not on Windows
(lrgOK <- all(log2(abs(.mpfr_erange())) >= 62)) # FALSE on Windows
## The largest quantile for which our mpfr-ized qnorm() does *NOT* underflow :
cM <- if(doX) { "2528468770.343293436810768159197281514373932815851856314908753969469064"
} else "2528468770.34329343681"
## 1 3 5 7 9 1 3 5 7 9 1 3 5 7 9 1 3 5 7 9 1 3 5 7 9 1 3 5 7 9 1 3 5 7 9 1 3
## 10 20 30 40 50 60 70
(qM <- mpfr(cM))
(pM <- pnorm(-qM)) # precision if(doX) 233 else 70 bits of precision ;
## |--> 0 on Windows {limited erange}; otherwise and if(doX) :
## 7.64890682545699845135633468495894619457903458325606933043966616334460003e-1388255822130839040
log(pM) # 233 bits: -3196577161300663205.8575919621115614148120323933633827052786873078552904
if(lrgOK) withAutoprint({
try( qnormI(pM) ) ## Error: lower < upper not fulfilled (evt. TODO)
## but this works
print(qnI <- qnormI(log(pM), log.p=TRUE)) # -2528468770.343293436
all.equal(-qM, qnI, tol = 0) # << show how close; seen 1.084202e-19
stopifnot( all.equal(-qM, qnI, tol = 1e-18) )
})
if(FALSE) # this (*SLOW*) gives 21 x the *same* (wrong) result --- FIXME!
qnormI(log(pM) * (2:22), log.p=TRUE)
if(doX) ## Show how bad it is (currently ca. 220 iterations, and then *wrong*)
str(qnormI(round(log(pM)), log.p=TRUE, trace=1, give.full = TRUE))
if(requireNamespace("DPQ"))
new("mpfr", as(DPQ::qnormR(pM, trace=1), "mpfr")) # as(*, "mpfr") also works for +/- Inf
# qnormR1(p= 0, m=0, s=1, l.t.= 1, log= 0): q = -0.5
# somewhat close to 0 or 1: r := sqrt(-lp) = 1.7879e+09
# r > 5, using rational form R_3(t), for t=1.787897e+09 -- that is *not* accurate
# [1] -94658744.369295865460462720............
## reset to previous status if needed
if(doIncr) .mpfr_erange_set( , old_eranges)
Run the code above in your browser using DataLab