Learn R Programming

RobLox (version 1.2.3)

RobLox-package: Optimally robust influence curves and estimators for location and scale

Description

Functions for the determination of optimally robust influence curves and estimators in case of normal location and/or scale (see Chapter 8 in Kohl (2005) <https://epub.uni-bayreuth.de/839/2/DissMKohl.pdf>).

Arguments

Author

Matthias Kohl matthias.kohl@stamats.de

Package versions

Note: The first two numbers of package versions do not necessarily reflect package-individual development, but rather are chosen for the RobAStXXX family as a whole in order to ease updating "depends" information.

References

M. Kohl (2005). Numerical Contributions to the Asymptotic Theory of Robustness. Dissertation. University of Bayreuth. https://epub.uni-bayreuth.de/id/eprint/839/2/DissMKohl.pdf.

H. Rieder (1994): Robust Asymptotic Statistics. Springer. tools:::Rd_expr_doi("10.1007/978-1-4684-0624-5")

H. Rieder, M. Kohl, and P. Ruckdeschel (2008). The Costs of Not Knowing the Radius. Statistical Methods and Applications 17(1): 13-40. tools:::Rd_expr_doi("10.1007/s10260-007-0047-7") M. Kohl, P. Ruckdeschel, and H. Rieder (2010). Infinitesimally Robust Estimation in General Smoothly Parametrized Models. Statistical Methods and Applications 19(3): 333-354. tools:::Rd_expr_doi("10.1007/s10260-010-0133-0").

M. Kohl and H.P. Deigner (2010). Preprocessing of gene expression data by optimally robust estimators. BMC Bioinformatics 11, 583. tools:::Rd_expr_doi("10.1186/1471-2105-11-583").

M. Kohl (2012). Bounded influence estimation for regression and scale. Statistics, 46(4): 437-488. tools:::Rd_expr_doi("10.1080/02331888.2010.540668")

See Also

RobAStBase-package

Examples

Run this code
library(RobLox)
ind <- rbinom(100, size=1, prob=0.05) 
x <- rnorm(100, mean=ind*3, sd=(1-ind) + ind*9)
roblox(x)
res <- roblox(x, eps.lower = 0.01, eps.upper = 0.1, returnIC = TRUE)
estimate(res)
confint(res)
confint(res, method = symmetricBias())
pIC(res)
## don't run to reduce check time on CRAN
if (FALSE) {
checkIC(pIC(res))
Risks(pIC(res))
Infos(pIC(res))
plot(pIC(res))
infoPlot(pIC(res))
}
## row-wise application
ind <- rbinom(200, size=1, prob=0.05) 
X <- matrix(rnorm(200, mean=ind*3, sd=(1-ind) + ind*9), nrow = 2)
rowRoblox(X)

Run the code above in your browser using DataLab