Learn R Programming

RobustAFT (version 1.4-7)

TML.censored.control.tml: Control parameters for the IRLS algorithm of the final TML.censored estimates

Description

Auxiliary function for TML.censored. Typically only used internally by TML.censored, but may be used to provide a control argument. This function provides default values.

Usage

TML.censored.control.tml(maxit.sigma=20, tol.sigma=0.0001, maxit.Beta=20, 
    tol.Beta=0.0001,Maxit.TML=50, tol.TML.sigma=0.001, tol.TML.Beta=0.001, 
    alg.sigma=1, nitmon = FALSE)

Value

A list with components named as the arguments.

Arguments

maxit.sigma

Maximum number of iterations in scale step.

tol.sigma

Tolerance for sigma in scale step.

maxit.Beta

Maximum number of iterations in coefficient step.

tol.Beta

Tolerance for coefficients in coefficient step.

Maxit.TML

Maximum number of iterations for global cycle.

tol.TML.sigma

Tolerance for sigma in global cycle.

tol.TML.Beta

Tolerance for coefficients in global cycle.

alg.sigma

Type of algorithm in scale step:

  • 1: fixed point algorithm.

  • 2: regula falsi.

nitmon

Set to TRUE if iteration monitoring is desired. Default=FALSE.

See Also

TML.censored, TML.censored.control.S, TML.censored.control.ref

Examples

Run this code
     ### In the example(TML.censored), the control argument for the final estimates 
	 ### can be built using this function:
	 
	 if (FALSE) {
     data(MCI)
     attach(MCI)
     
     # Robust Accelerated Failure Time Regression with Gaussian errors
     ctrol.ref <- list(maxit.sigma=2,tol.sigma=0.0001,maxit.Beta=2,tol.Beta=0.0001,
           Maxit.S=50, tol.S.sigma=0.001, tol.S.Beta=0.001,alg.sigma=1,nitmon=FALSE)

     ctrol.tml <- TML.censored.control.tml(maxit.sigma=50,tol.sigma=0.0001,
           maxit.Beta=50,tol.Beta=0.0001, Maxit.TML=50, tol.TML.sigma=0.001, 
           tol.TML.Beta=0.001, alg.sigma=1,nitmon=FALSE)
     
     WML   <- TML.censored(log(LOS)~TypAdm*Age,data=MCI,delta=Dest,otp="adaptive",
           control.ref=ctrol.ref,control.tml=ctrol.tml)

     summary(WML)
}

Run the code above in your browser using DataLab