#############################################################
## In this example, we are using Iris dataset.
## It should be noted that since the values of the decision attribute are strings,
## they should be transformed into numeric values using unclass()
#############################################################
data(iris)
## shuffle the data
set.seed(2)
irisShuffled <- iris[sample(nrow(iris)),]
## transform values of the decision attribute into numerics
irisShuffled[,5] <- unclass(irisShuffled[,5])
## split the data into training and testing data
iris.training <- irisShuffled[1:105,]
iris.testing <- irisShuffled[106:nrow(irisShuffled),1:4]
colnames(iris.training) <- c("Sepal.Length", "Sepal.Width", "Petal.Length",
"Petal.Width", "Species")
## convert into a standard decision table
decision.table <- SF.asDecisionTable(dataset = iris.training, decision.attr = 5,
indx.nominal = c(5))
tst.iris <- SF.asDecisionTable(dataset = iris.testing)
###### FRNN algorithm using lower/upper approximation:
###### Implicator/tnorm based approach
control <- list(type.LU = "implicator.tnorm", k = 20,
type.aggregation = c("t.tnorm", "lukasiewicz"),
type.relation = c("tolerance", "eq.1"), t.implicator = "lukasiewicz")
if (FALSE) res.1 <- C.FRNN.FRST(decision.table = decision.table, newdata = tst.iris,
control = control)
###### FRNN algorithm using VQRS
control <- list(type.LU = "vqrs", k = 20, q.some = c(0.1, 0.6), q.most = c(0.2, 1),
type.relation = c("tolerance", "eq.1"),
type.aggregation = c("t.tnorm","lukasiewicz"))
if (FALSE) res.2 <- C.FRNN.FRST(decision.table = decision.table, newdata = tst.iris,
control = control)
Run the code above in your browser using DataLab