Usage
"igapfill"(x, groups, fill = NULL, tol = 1e-6, maxiter = 0, norm = function(x) sqrt(max(x^2)), base = c("original", "reconstructed"), ..., trace = FALSE, drop = TRUE, drop.attributes = FALSE, cache = TRUE)
"igapfill"(x, groups, fill = NULL, tol = 1e-6, maxiter = 0, norm = function(x) sqrt(max(x^2)), base = c("original", "reconstructed"), ..., trace = FALSE, drop = TRUE, drop.attributes = FALSE, cache = TRUE)
"igapfill"(x, groups, fill = NULL, tol = 1e-6, maxiter = 0, norm = function(x) sqrt(max(x^2)), base = c("original", "reconstructed"), ..., trace = FALSE, drop = TRUE, drop.attributes = FALSE, cache = TRUE)
"igapfill"(x, groups, fill = NULL, tol = 1e-6, maxiter = 0, norm = function(x) sqrt(max(x^2)), base = c("original", "reconstructed"), ..., trace = FALSE, drop = TRUE, drop.attributes = FALSE, cache = TRUE)
Arguments
x
Shaped SSA object holding the decomposition
groups
list, the grouping of eigentriples to be used in the forecast
fill
initial values for missed entries, recycled if necessary;
if missed, then average of the series will be used
tol
tolerance for reconstruction iterations
maxiter
upper bound for the number of iterations
norm
distance function used for covergence criterion
base
series used as a 'seed' for gapfilling: original or
reconstructed according to the value of groups
argument
trace
logical, indicates whether the convergence process should be traced
drop
logical, if 'TRUE' then the result is coerced to series
itself, when possible (length of 'groups' is one)
drop.attributes
logical, if 'TRUE' then the attributes of the input series
are not copied to the reconstructed ones.
cache
logical, if 'TRUE' then intermediate results will be
cached in the SSA object.