Learn R Programming

R wrapper for Van der Maaten’s Barnes-Hut implementation of t-Distributed Stochastic Neighbor Embedding

Installation

To install from CRAN:

install.packages("Rtsne") # Install Rtsne package from CRAN

To install the latest version from the github repository, use:

if(!require(devtools)) install.packages("devtools") # If not already installed
devtools::install_github("jkrijthe/Rtsne")

Usage

After installing the package, use the following code to run a simple example (to install, see below).

library(Rtsne) # Load package
iris_unique <- unique(iris) # Remove duplicates
set.seed(42) # Sets seed for reproducibility
tsne_out <- Rtsne(as.matrix(iris_unique[,1:4])) # Run TSNE
plot(tsne_out$Y,col=iris_unique$Species,asp=1) # Plot the result

Details

This R package offers a wrapper around the Barnes-Hut TSNE C++ implementation of [2] [3]. Changes were made to the original code to allow it to function as an R package and to add additional functionality and speed improvements.

References

[1] L.J.P. van der Maaten and G.E. Hinton. “Visualizing High-Dimensional Data Using t-SNE.” Journal of Machine Learning Research 9(Nov):2579-2605, 2008.

[2] L.J.P van der Maaten. “Accelerating t-SNE using tree-based algorithms.” Journal of Machine Learning Research 15.1:3221-3245, 2014.

[3] https://lvdmaaten.github.io/tsne/

Copy Link

Version

Install

install.packages('Rtsne')

Monthly Downloads

42,320

Version

0.17

License

file LICENSE

Issues

Pull Requests

Stars

Forks

Maintainer

Jesse Krijthe

Last Published

December 7th, 2023

Functions in Rtsne (0.17)

Rtsne

Barnes-Hut implementation of t-Distributed Stochastic Neighbor Embedding
normalize_input

Normalize input data matrix