Learn R Programming

Runuran (version 0.40)

udlnorm: UNU.RAN object for Log Normal distribution

Description

Create UNU.RAN object for a Log Normal distribution whose logarithm has mean equal to meanlog and standard deviation equal to sdlog.

[Distribution] -- Log Normal.

Usage

udlnorm(meanlog=0, sdlog=1, lb=0, ub=Inf)

Value

An object of class "unuran.cont".

Arguments

meanlog

mean of the distribution on the log scale.

sdlog

standard deviation of the distribution on the log scale.

lb

lower bound of (truncated) distribution.

ub

upper bound of (truncated) distribution.

Author

Josef Leydold and Wolfgang H\"ormann unuran@statmath.wu.ac.at.

Details

The log normal distribution has density $$ f(x) = \frac{1}{\sqrt{2 \pi} \sigma x} \exp{- (\log(x)-\mu)^2 / (2 sigma^2)} $$ where \(\mu\) is the mean and \(\sigma\) the standard deviation of the logarithm.

The domain of the distribution can be truncated to the interval (lb,ub).

References

N.L. Johnson, S. Kotz, and N. Balakrishnan (1994): Continuous Univariate Distributions, Volume 1. 2nd edition, John Wiley & Sons, Inc., New York. Chap. 14, p. 207.

See Also

unuran.cont.

Examples

Run this code
## Create distribution object for log normal distribution
distr <- udlnorm()
## Generate generator object; use method PINV (inversion)
gen <- pinvd.new(distr)
## Draw a sample of size 100
x <- ur(gen,100)

Run the code above in your browser using DataLab