## Not run:
# library(SAVE)
#
# #############
# # load data
# #############
#
# data(spotweldfield,package='SAVE')
# data(spotweldmodel,package='SAVE')
#
# ##############
# # create the SAVE object which describes the problem and
# # compute the corresponding mle estimates
# ##############
#
# gfsw <- SAVE(response.name="diameter", controllable.names=c("current", "load", "thickness"),
# calibration.names="tuning", field.data=spotweldfield,
# model.data=spotweldmodel, mean.formula=~1,
# bestguess=list(tuning=4.0))
#
# ##############
# # obtain the posterior distribution of the unknown parameters
# ##############
#
# gfsw <- bayesfit(object=gfsw, prior=c(uniform("tuning", upper=8, lower=0.8)),
# n.iter=20000, n.burnin=100, n.thin=2)
#
# #A trace plot of the chains
# plot(gfsw, option="trace")
# #The histogram of the posterior density of calibration parameters
# plot(gfsw, option="calibration")
# #The histogram of the posterior density of precision parameters
# plot(gfsw, option="precision")
#
# ## End(Not run)
Run the code above in your browser using DataLab