# NOT RUN {
# Acquire environmental variables
files <- list.files(path = file.path(system.file(package = "dismo"), "ex"),
pattern = "grd", full.names = TRUE)
predictors <- raster::stack(files)
# Prepare presence locations
p_coords <- condor[, 1:2]
# Prepare background locations
bg_coords <- dismo::randomPoints(predictors, 5000)
# Create SWD object
presence <- prepareSWD(species = "Vultur gryphus", coords = p_coords,
env = predictors, categorical = "biome")
bg <- prepareSWD(species = "Vultur gryphus", coords = bg_coords,
env = predictors, categorical = "biome")
# Split presence locations in training (80%) and testing (20%) datasets
datasets <- trainValTest(presence, test = 0.2)
train <- datasets[[1]]
test <- datasets[[2]]
# Train a model
model <- train(method = "Maxnet", p = train, a = bg, fc = "l")
# Compute the training AUC
auc(model)
# Compute the testing AUC
auc(model, test)
# }
# NOT RUN {
# Same example but using cross validation instead of training and testing
# datasets
model <- train(method = "Maxnet", p = presence, a = bg, fc = "l", rep = 4,
seed = 25)
# Compute the training AUC
auc(model)
# Compute the testing AUC
auc(model, test = TRUE)
# }
Run the code above in your browser using DataLab