# NOT RUN {
# Acquire environmental variables
files <- list.files(path = file.path(system.file(package = "dismo"), "ex"),
pattern = "grd", full.names = TRUE)
predictors <- raster::stack(files)
# Prepare presence locations
p_coords <- condor[, 1:2]
# Prepare background locations
bg_coords <- dismo::randomPoints(predictors, 5000)
# Create SWD object
presence <- prepareSWD(species = "Vultur gryphus", coords = p_coords,
env = predictors, categorical = "biome")
bg <- prepareSWD(species = "Vultur gryphus", coords = bg_coords,
env = predictors, categorical = "biome")
# Train a model
model <- train(method = "Maxnet", p = presence, a = bg, fc = "l")
# Get the confusion matrix for thresholds ranging from 0 to 1
cm <- confMatrix(model, type = "cloglog")
head(cm)
tail(cm)
# Get the confusion matrix for a specific threshold
confMatrix(model, type = "logistic", th = 0.6)
# }
Run the code above in your browser using DataLab