# NOT RUN {
# Acquire environmental variables
files <- list.files(path = file.path(system.file(package = "dismo"), "ex"),
pattern = "grd", full.names = TRUE)
predictors <- raster::stack(files)
# Prepare presence locations
p_coords <- condor[, 1:2]
# Prepare background locations
bg_coords <- dismo::randomPoints(predictors, 5000)
# Create SWD object
presence <- prepareSWD(species = "Vultur gryphus", coords = p_coords,
env = predictors, categorical = "biome")
bg <- prepareSWD(species = "Vultur gryphus", coords = bg_coords,
env = predictors, categorical = "biome")
# Split presence locations in training (80%) and testing (20%) datasets
datasets <- trainValTest(presence, test = 0.2)
train <- datasets[[1]]
test <- datasets[[2]]
# Train a model
model <- train(method = "Maxnet", p = train, a = bg, fc = "l")
# Define the hyperparameters to test
h <- list(reg = 1:2, fc = c("lqp", "lqph"), a = c(1000, 2000))
# Run the function using as metric the AUC
output <- gridSearch(model, hypers = h, metric = "auc", test = test,
bg4test = bg)
output@results
output@models
# Order rusults by highest test AUC
head(output@results[order(-output@results$test_AUC), ])
# Run the function using as metric the AICc and without saving the trained
# models, helpful when numerous hyperparameters are tested to avoid memory
# problems
output <- gridSearch(model, hypers = h, metric = "aicc", bg4test = bg,
env = predictors, save_models = FALSE)
output@results
# }
Run the code above in your browser using DataLab