# NOT RUN {
# Acquire environmental variables
files <- list.files(path = file.path(system.file(package = "dismo"), "ex"),
pattern = "grd", full.names = TRUE)
predictors <- raster::stack(files)
# Prepare presence locations
p_coords <- condor[, 1:2]
# Prepare background locations
bg_coords <- dismo::randomPoints(predictors, 5000)
# Create SWD object
presence <- prepareSWD(species = "Vultur gryphus", coords = p_coords,
env = predictors, categorical = "biome")
bg <- prepareSWD(species = "Vultur gryphus", coords = bg_coords,
env = predictors, categorical = "biome")
# Split presence locations in training (80%) and testing (20%) datasets
datasets <- trainValTest(presence, test = 0.2)
train <- datasets[[1]]
test <- datasets[[2]]
# Train a Maxnet model
model <- train(method = "Maxnet", p = train, a = bg, fc = "lq")
# Remove all variables with permuation importance lower than 2%
output <- reduceVar(model, th = 2, metric = "auc", test = test, permut = 1)
# Remove variables with permuation importance lower than 2% only if testing
# TSS doesn't decrease
output <- reduceVar(model, th = 2, metric = "tss", test = test, permut = 1,
use_jk = TRUE)
# Remove variables with permuation importance lower than 2% only if AICc
# doesn't increase
output <- reduceVar(model, th = 2, metric = "aicc", permut = 1,
use_jk = TRUE, env = predictors)
# Train a Maxent model
model <- train(method = "Maxent", p = train, a = bg, fc = "lq")
# Remove all variables with percent contribution lower than 2%
output <- reduceVar(model, th = 2, metric = "auc", test = test,
use_pc = TRUE)
# }
Run the code above in your browser using DataLab