# Acquire environmental variables
files <- list.files(path = file.path(system.file(package = "dismo"), "ex"),
pattern = "grd",
full.names = TRUE)
predictors <- terra::rast(files)
# Prepare presence and background locations
p_coords <- virtualSp$presence
bg_coords <- virtualSp$background
# Create SWD object
data <- prepareSWD(species = "Virtual species",
p = p_coords,
a = bg_coords,
env = predictors,
categorical = "biome")
# Split presence locations in training (80%) and testing (20%) datasets
datasets <- trainValTest(data,
test = 0.2,
only_presence = TRUE)
train <- datasets[[1]]
test <- datasets[[2]]
# Train a model
model <- train(method = "Maxnet",
data = train,
fc = "lq")
# Execute the Jackknife test only for the environmental variables "bio1" and
# "bio12", using the metric AUC
doJk(model,
metric = "auc",
variables = c("bio1", "bio12"),
test = test)
# The same without testing dataset
doJk(model,
metric = "auc",
variables = c("bio1", "bio12"))
# Execute the Jackknife test only for the environmental variables "bio1" and
# "bio12", using the metric TSS but without running the test for one single
# variable
doJk(model,
metric = "tss",
variables = c("bio1", "bio12"),
test = test,
with_only = FALSE)
# Execute the Jackknife test only for the environmental variables "bio1" and
# "bio12", using the metric AICc but without running the test for one single
# variable
doJk(model,
metric = "aicc",
variables = c("bio1", "bio12"),
with_only = FALSE,
env = predictors)
# Execute the Jackknife test for all the environmental variables using the
# metric AUC and returning all the trained models
jk <- doJk(model,
metric = "auc",
test = test,
return_models = TRUE)
jk$results
jk$models_without
jk$models_withonly
Run the code above in your browser using DataLab