# Acquire environmental variables
files <- list.files(path = file.path(system.file(package = "dismo"), "ex"),
pattern = "grd",
full.names = TRUE)
predictors <- terra::rast(files)
# Prepare presence and background locations
p_coords <- virtualSp$presence
bg_coords <- virtualSp$background
# Create SWD object
data <- prepareSWD(species = "Virtual species",
p = p_coords,
a = bg_coords,
env = predictors,
categorical = "biome")
# Split presence locations in training (80%) and testing (20%) datasets
datasets <- trainValTest(data,
test = 0.2,
only_presence = TRUE)
train <- datasets[[1]]
test <- datasets[[2]]
# Train a model
model <- train(method = "Maxnet",
data = train,
fc = "l")
# Define the hyperparameters to test
h <- list(reg = seq(0.2, 3, 0.2),
fc = c("lqp", "lqph", "lh"))
# Run the function using as metric the AUC
output <- randomSearch(model,
hypers = h,
metric = "auc",
test = test,
pop = 10,
seed = 25)
output@results
output@models
# Order results by highest test AUC
output@results[order(-output@results$test_AUC), ]
Run the code above in your browser using DataLab