Learn R Programming

SNPRelate (version 1.6.4)

snpgdsPCA: Principal Component Analysis (PCA) on SNP genotype data

Description

To calculate the eigenvectors and eigenvalues for principal component analysis in GWAS.

Usage

snpgdsPCA(gdsobj, sample.id=NULL, snp.id=NULL, autosome.only=TRUE, remove.monosnp=TRUE, maf=NaN, missing.rate=NaN, algorithm=c("exact", "randomized"), eigen.cnt=ifelse(identical(algorithm, "randomized"), 16L, 32L), num.thread=1L, bayesian=FALSE, need.genmat=FALSE, genmat.only=FALSE, eigen.method=c("DSPEVX", "DSPEV"), aux.dim=eigen.cnt*2L, iter.num=10L, verbose=TRUE)

Arguments

gdsobj
an object of class SNPGDSFileClass, a SNP GDS file
sample.id
a vector of sample id specifying selected samples; if NULL, all samples are used
snp.id
a vector of snp id specifying selected SNPs; if NULL, all SNPs are used
autosome.only
if TRUE, use autosomal SNPs only; if it is a numeric or character value, keep SNPs according to the specified chromosome
remove.monosnp
if TRUE, remove monomorphic SNPs
maf
to use the SNPs with ">= maf" only; if NaN, no MAF threshold
missing.rate
to use the SNPs with "
eigen.cnt
output the number of eigenvectors; if eigen.cnt
algorithm
"exact", traditional exact calculation; "randomized", fast PCA with randomized algorithm introduced in Galinsky et al. 2016
num.thread
the number of (CPU) cores used; if NA, detect the number of cores automatically
bayesian
if TRUE, use bayesian normalization
need.genmat
if TRUE, return the genetic covariance matrix
genmat.only
return the genetic covariance matrix only, do not compute the eigenvalues and eigenvectors
eigen.method
"DSPEVX" -- compute the top eigen.cnt eigenvalues and eigenvectors using LAPACK::DSPEVX; "DSPEV" -- to be compatible with SNPRelate_1.1.6 or earlier, using LAPACK::DSPEV; "DSPEVX" is significantly faster than "DSPEV" if only top principal components are of interest
aux.dim
auxiliary dimension used in fast randomized algorithm
iter.num
iteration number used in fast randomized algorithm
verbose
if TRUE, show information

Value

Return a snpgdsPCAClass object, and it is a list:
sample.id
the sample ids used in the analysis
snp.id
the SNP ids used in the analysis
eigenval
eigenvalues
eigenvect
eigenvactors, "# of samples" x "eigen.cnt"
varprop
variance proportion for each principal component
TraceXTX
the trace of the genetic covariance matrix
Bayesian
whether use bayerisan normalization
genmat
the genetic covariance matrix

Details

The minor allele frequency and missing rate for each SNP passed in snp.id are calculated over all the samples in sample.id.

References

Patterson N, Price AL, Reich D. Population structure and eigenanalysis. PLoS Genet. 2006 Dec;2(12):e190.

Galinsky KJ, Bhatia G, Loh PR, Georgiev S, Mukherjee S, Patterson NJ, Price AL. Fast Principal-Component Analysis Reveals Convergent Evolution of ADH1B in Europe and East Asia. Am J Hum Genet. 2016 Mar 3;98(3):456-72. doi: 10.1016/j.ajhg.2015.12.022. Epub 2016 Feb 25.

See Also

snpgdsPCACorr, snpgdsPCASampLoading, snpgdsPCASNPLoading

Examples

Run this code
# open an example dataset (HapMap)
genofile <- snpgdsOpen(snpgdsExampleFileName())

# run PCA
RV <- snpgdsPCA(genofile)

# eigenvalues
head(RV$eigenval)

# variance proportion (%)
head(round(RV$varprop*100, 2))
# [1] 12.23  5.84  1.01  0.95  0.84  0.74


####  there is no population information  ####

# make a data.frame
tab <- data.frame(sample.id = RV$sample.id,
    EV1 = RV$eigenvect[,1],    # the first eigenvector
    EV2 = RV$eigenvect[,2],    # the second eigenvector
    stringsAsFactors = FALSE)
head(tab)
#   sample.id         EV1         EV2
# 1   NA19152 -0.08411287 -0.01226860
# 2   NA19139 -0.08360644 -0.01085849
# 3   NA18912 -0.08110808 -0.01184524
# 4   NA19160 -0.08680864 -0.01447106
# 5   NA07034  0.03109761  0.07709255
# 6   NA07055  0.03228450  0.08155730

# draw
plot(tab$EV2, tab$EV1, xlab="eigenvector 2", ylab="eigenvector 1")



####  there are population information  ####

# get population information
#   or pop_code <- scan("pop.txt", what=character())
#   if it is stored in a text file "pop.txt"
pop_code <- read.gdsn(index.gdsn(genofile, "sample.annot/pop.group"))

# get sample id
samp.id <- read.gdsn(index.gdsn(genofile, "sample.id"))

# assume the order of sample IDs is as the same as population codes
cbind(samp.id, pop_code)
#        samp.id       pop_code
#   [1,] "NA19152"     "YRI"   
#   [2,] "NA19139"     "YRI"   
#   [3,] "NA18912"     "YRI"   
#   [4,] "NA19160"     "YRI"   
#   [5,] "NA07034"     "CEU"   
#   ...

# make a data.frame
tab <- data.frame(sample.id = RV$sample.id,
    pop = factor(pop_code)[match(RV$sample.id, samp.id)],
    EV1 = RV$eigenvect[,1],    # the first eigenvector
    EV2 = RV$eigenvect[,2],    # the second eigenvector
    stringsAsFactors = FALSE)
head(tab)
#   sample.id pop         EV1         EV2
# 1   NA19152 YRI -0.08411287 -0.01226860
# 2   NA19139 YRI -0.08360644 -0.01085849
# 3   NA18912 YRI -0.08110808 -0.01184524
# 4   NA19160 YRI -0.08680864 -0.01447106
# 5   NA07034 CEU  0.03109761  0.07709255
# 6   NA07055 CEU  0.03228450  0.08155730

# draw
plot(tab$EV2, tab$EV1, col=as.integer(tab$pop),
    xlab="eigenvector 2", ylab="eigenvector 1")
legend("bottomright", legend=levels(tab$pop), pch="o", col=1:4)


# close the file
snpgdsClose(genofile)

Run the code above in your browser using DataLab