# NOT RUN {
##Samples should be arranged columnwise.
##Input data should not contain any categorial
##data such as taxonomic assignment or barcode sequences.
##An example of the input data can be found below:
example_input_data <- matrix(c(sample(1:20, 100, replace = TRUE),
sample(1:30, 100, replace = TRUE),sample(1:40, 100, replace = TRUE)), nrow = 100)
colnames(example_input_data) <- c("sample_1","sample_2","sample_3")
example_input_data <- as.data.frame(example_input_data)
example_input_data
##Default settings of SRScurve.
SRScurve(example_input_data, metric = "richness", step = 50,
ylab = "richness",
col = c("#000000", "#E69F00", "#56B4E9"))
##Limit the compution of SRS curves to a sample size of 200.
SRScurve(example_input_data, metric = "richness", step = 50,
max.sample.size = 200, ylab = "richness",
col = c("#000000", "#E69F00", "#56B4E9"))
##SRScurve with comparison of SRS (solid lines) and repeated rarefying (dashed lines).
##Different colors correspond to indiviual samples. Cuttoff-level set to 200.
SRScurve(example_input_data, metric = "richness", step = 50,
sample = 200, max.sample.size = 200,
rarefy.comparison = TRUE, rarefy.repeats = 10, rarefy.comparison.legend = TRUE,
ylab = "richness",
col = c(rep(c("#000000", "#E69F00", "#56B4E9"),2)),
lty = c(1,2))
# }
Run the code above in your browser using DataLab