d2 <- SSBtoolsData("d2")
set.seed(12)
d2$y <- round(rnorm(nrow(d2)), 2)
d <- d2[sample.int(nrow(d2), size = 20), ]
aggregate_multiple_fun(
data = d,
by = d[c("k_group", "main_income")],
vars = c("freq", "y", median = "freq", median = "y", e1 = "freq"),
fun = c(sum, median = median, e1 = function(x) x[1])
)
# With functions as named strings
aggregate_multiple_fun(
data = d,
by = d[c("k_group", "main_income")],
vars = c(sum = "y", med = "freq", med = "y"),
fun = c(sum = "sum", med = "median")
)
# Without specifying functions
# - equivalent to `fun = c("sum", "median")`
aggregate_multiple_fun(
data = d,
by = d[c("k_group", "main_income")],
vars = c(sum = "y", median = "freq", median = "y")
)
# The single unnamed variable feature. Also functions as strings.
aggregate_multiple_fun(
data = d,
by = d[c("k_group", "main_income")],
vars = "y",
fun = c("sum", "median", "min", "max")
)
# with multiple outputs (function my_range)
# and with function of two variables (weighted.mean(y, freq))
my_range <- function(x) c(min = min(x), max = max(x))
aggregate_multiple_fun(
data = d,
by = d[c("k_group", "main_income")],
vars = list("freq", "y", ra = "freq", wmean = c("y", "freq")),
fun = c(sum, ra = my_range, wmean = weighted.mean)
)
# with specified output variable names
my_range <- function(x) c(min = min(x), max = max(x))
aggregate_multiple_fun(
data = d,
by = d[c("k_group", "main_income")],
vars = list("freq", "y",
`freqmin,freqmax` = list(ra = "freq"),
yWmean = list(wmean = c("y", "freq"))),
fun = c(sum, ra = my_range, wmean = weighted.mean)
)
# To illustrate forward_dots and dots2dots
q <- d[1, ]
q$w <- 100 * rnorm(1)
for (dots2dots in c(FALSE, TRUE)) for (forward_dots in c(FALSE, TRUE)) {
cat("\n=======================================\n")
cat("forward_dots =", forward_dots, ", dots2dots =", dots2dots)
out <- aggregate_multiple_fun(
data = q, by = q["k_group"],
vars = c(sum = "freq", round = "w"), fun = c("sum", "round"),
digits = 3, forward_dots = forward_dots, dots2dots = dots2dots)
cat("\n")
print(out)
}
# In last case digits forwarded to sum (as ...)
# and wrongly included in the summation
Run the code above in your browser using DataLab