sslLDS
implements low density separation with Transductive Support Vector Machines(TSVM) for semi-supervised binary classification
sslLDS(xl, yl, xu, rho = 1, C = 1, dist.type = "Euclidean", p = 0.3, improvement = 1e-04, seed = 0, delta = 0.01, alpha = 0.01)
yu
optC.star
para
w
and b
sslLDS
constructs a low density graph with connectivity kernel.It implements multidemensional scaling
for demensionality reduction and chooses optimal C.star
by cross-validation. Finally, it trains the TSVM model with gradient descent algorithm.
data(iris)
xl<-iris[c(1:20,51:70),-5]
xu<-iris[c(21:50,71:100),-5]
yl<-rep(c(1,-1),each=20)
l<-sslLDS(xl,yl,xu,alpha=0.1)
Run the code above in your browser using DataLab