
crossGeneral
) or a "tight" (crossTight
) boundary for a Wiener
process. The method of Loader and Deely (1987) is used. A tight
boundary is a boundary generating the tighest confidence band for the
process (Kendall et al, 2007). Utility function and methods:
mkTightBMtargetFct
, print
, summary
, plot
,
lines
, are also provided to use and explore the results.
crossGeneral(tMax = 1, h = 0.001, cFct, cprimeFct, bFct, withBounds = FALSE, Lplus)
crossTight(tMax = 1, h = 0.001, a = 0.3, b = 2.35, withBounds = TRUE, logScale = FALSE)
mkTightBMtargetFct(ci = 0.95, tMax = 1, h = 0.001, logScale = FALSE)
"print"(x, ...)
"summary"(object, digits, ...)
"plot"(x, y, which = c("Distribution", "density"), xlab, ylab, ...)
"lines"(x, which = c("Distribution", "density"), ...)
numeric
. The "time" during which the
Wiener process is followed.numeric
. The integration time step used for
the numerical solution of the Volterra integral equation (see
details
).
function
defining the boundary to be crossed. The
first argument of the function should be a "time" argument. If the
first argument is a vector, the function should return a vector of the
same length.
function
defining time derivative of the
boundary to be crossed. Needs to be specified only if a check of
the sign of the kernel derivative (see details
) is requested. The
first argument of the function should be a "time" argument. If the
first argument is a vector, the function should return a vector of the
same length.
function
. The "b" function of Loader and Deely
(1987). Does not need to be specified (i.e., can be
missing) but can be used to improve convergence. The
first argument of the function should be a "time" argument. If the
first argument is a vector, the function should return a vector of the
same length.
logical
. Should bounds on the distribution
be calculated? If yes, set it to TRUE
, leave it to its
default value, FALSE
, otherwise.logical
. If bounds are requested
(withBounds=TRUE
) and if the sign of the time derivative of
the kernel is known to be positive or null, set to TRUE
, if
it is known to be negative, set it to FALSE
. If the sign is
unknown, leave Lplus
unspecified and provide a
cprimeFct
function.
logical
. Should intermediate calculations in
crossTight
be carried out on the log scale for numerical
precision? If yes, set it to TRUE
, leave it to its default,
FALSE
, otherwise.numerics
, the two parameters of the "tight"
boundary: c(t) = a + b*sqrt(t)
. See details.numeric
larger than 0 and smaller than 1. The
nominal coverage probability desired for a "tight" confidence band
(see details
).
FirstPassageTime
object returned by
crossGeneral
or crossTight
.
plot
method.character
string, "Distribution
" or
"density
", specifying if a probability distribution or a
probability density should be graphed.
plot
.integer
. The number of digits to print
in summary
. If bounds were computed, the value of digits
is computed internally based on the bounds width.
crossGeneral
and crossTight
return a
FirstPassageTime
object which is a list
with the
following components:
numeric
vector of "times" at which the first
passage time probability has been evaluated.numeric
vector of first passage probability.numeric
vector with the upper bound of first
passage probability. Only if withBounds
was set to
TRUE
.
numeric
vector with the lower bound of first
passage probability. Only if withBounds
was set to
TRUE
.
numeric
vector of "times" at which the first
passage time probability density has been evaluated. Mid
points of component time
.numeric
vector of first passage probability
density.numeric
. The value of argument h
of
crossGeneral
or crossTight
.mkTightBMtargetFct
returns a function
which can be used
in optim. This function returns the square of the difference between
(1-ci)/2
(remember the "symmetry" of the Wiener processes
paths, that is, for every path there is a symmetric one with respect
to the abscissa having with the same probability) and the
probability to have the first passage time of
the Wiener process smaller or equal to 1 when the boundary is the
"tight" boundary defined by: $a +
b*sqrt(t)$. The function takes a single vector argument containing the
log of the parameters a
(vector's first element) and
b
(vector's second element).Methods print.FirstPassageTime
and
summary.FirstPassageTime
output the probability to observe the
first exit between 0 and tMax
. If bounds were computed, the
precision on the probability is also returned (as an attribute for
print.FirstPassageTime
). summary.FirstPassageTime
also
gives the integration time step, h
, used.
crossGeneral
with withBounds = TRUE
and a negative
kernel derivative is presently poorly tested, so be careful and let me
know if mistakes show up.tMax
of crossGeneral
and
crossTight
) through a boundary defined by $c(t)$ is based
on the numerical solution of a Volterra
integral equation of the first kind satisfied by $G()$ and
defined by their Eq. 2.2:
h
is the step size used in the numerical
solution of the above Volterra integral equation. The mid-point method
(Eq. 3.1 and 3.2 of Loader and Deely (1987)) is implemented. If
tMax
is not a multiple of h
it is modified as follows:
tMax <- round(tMax/h)*h
. crossGeneral
generates functions $F()$ and $K(,)$
internally given $c()$ (argument cFct
) and $b()$
(argument bFct
). If bFct
is not given (i.e.,
missing(bFct)
returns TRUE
) it is taken as uniformly
0. If a numeric is given for cFct
then $c()$ is
defined as a uniform function returning the first element of the
argument (cFct
).
Function crossTight
assumes the following functional form for
$c()$: $a + b *
sqrt(t)$. $b()$ is set to $c'()$ (the derivative of
$c()$). Arguments a
and b
of crossTight
correspond to the 2 parameters of $c()$.
If argument withBounds
is set to TRUE
then bounds on
$G()$ are computed. Function crossTight
uses Eq. 3.6
and 3.7 of Loader and Deely (1987) to compute these bounds,
$Gl(t)$ and $Gu(t)$. Function
crossGeneral
uses Eq. 3.6 and 3.7 (if argument Lplus
is
set to TRUE
) or Eq. 3.10 and 3.11 (if argument Lplus
is
set to FALSE
). Here Lplus
stands for the sign of the
partial derivative of the kernel $K(,)$ with respect to its
second argument. If the sign is not known the user can provide the
derivative $c'()$ of $c()$ as argument
cprimeFct
. A (slow) numerical check is then performed to decide
wether Lplus
should be TRUE
or FALSE
or if it
changes sign (in which case bounds cannot be obtained and an error is returned).
In function crossTight
argument logScale
controls the
way some intermediate computations of the mid-point method are
implemented. If set to FALSE
(the default) a literal
implementation of Eq. 3.2 of Loader and Deely (1987) is used. If set
to TRUE
then additions subtractions are computed on the log
scale using functions logspace_add
and logspace_sub
of
the R API
. The computation is then slightly slower and it turns
out that the gain
in numerical precision is not really significant, so you can safely
leave this argument to its default value.
W. S. Kendall, J.- M. Marin and C. P. Robert (2007) Brownian Confidence Bands on Monte Carlo Output. Statistics and Computing 17: 1--10. Preprint available at: http://www.ceremade.dauphine.fr/%7Exian/kmr04.rev.pdf
print
,
summary
,
plot
,
lines
,
pinvgauss
## Not run:
# ## Reproduce Table 1 (p 101) of Loader and Deely (1987)
# ## define a vector of n values
# nLD <- c(8,16,32,64,128)
#
# ## Part 1: c(t) = sqrt(1+t) and tMax=1
# ## define cFct
# cFT1p1 <- function(t) sqrt(1+t)
# ## define the different bFct
# bFT1p1.ii <- function(t) 0.5/sqrt(1+t)
# bFT1p1.iii <- function(t) (cFT1p1(t)-cFT1p1(0))/t
# bFT1p1.iv <- function(t) 0.5*(bFT1p1.ii(t)+bFT1p1.iii(t))
# bFT1p1.v <- function(t) (2*t-4/5*((1+t)^2.5-1))/t^3+3*cFT1p1(t)/2/t
# ## Do the calculations
# round(t(sapply(nLD,
# function(n) {
# c(n=n,
# i=crossGeneral(tMax=1,h=1/n,cFct=cFT1p1)$G[n],
# ii=crossGeneral(tMax=1,h=1/n,cFct=cFT1p1,bFct=bFT1p1.ii)$G[n],
# iii=crossGeneral(tMax=1,h=1/n,cFct=cFT1p1,bFct=bFT1p1.iii)$G[n],
# iv=crossGeneral(tMax=1,h=1/n,cFct=cFT1p1,bFct=bFT1p1.iv)$G[n],
# v=crossGeneral(tMax=1,h=1/n,cFct=cFT1p1,bFct=bFT1p1.v)$G[n])})),
# digits=6)
#
# ## Part 2: c(t) = exp(-t) and tMax=1
# ## define cFct
# cFT1p2 <- function(t) exp(-t)
# ## define the different bFct
# cFT1p2 <- function(t) exp(-t)
# bFT1p2.ii <- function(t) -exp(-t)
# bFT1p2.iii <- function(t) (cFT1p2(t)-cFT1p2(0))/t
# bFT1p2.iv <- function(t) 0.5*(bFT1p2.ii(t)+bFT1p2.iii(t))
# bFT1p2.v <- function(t) 3*(1-t-exp(-t))/t^3+3*cFT1p2(t)/2/t
# ## Do the calculations
# round(t(sapply(nLD,
# function(n) {
# c(n=n,
# i=crossGeneral(tMax=1,h=1/n,cFct=cFT1p2)$G[n],
# ii=crossGeneral(tMax=1,h=1/n,cFct=cFT1p2,bFct=bFT1p2.ii)$G[n],
# iii=crossGeneral(tMax=1,h=1/n,cFct=cFT1p2,bFct=bFT1p2.iii)$G[n],
# iv=crossGeneral(tMax=1,h=1/n,cFct=cFT1p2,bFct=bFT1p2.iv)$G[n],
# v=crossGeneral(tMax=1,h=1/n,cFct=cFT1p2,bFct=bFT1p2.v)$G[n])})),
# digits=6)
#
# ## Part 3: c(t) = t^2 + 3*t + 1 and tMax=1
# ## define cFct
# cFT1p3 <- function(t) t^2+3*t+1
# ## define the different bFct
# bFT1p3.ii <- function(t) 2*t+3
# bFT1p3.iii <- function(t) (cFT1p3(t)-cFT1p3(0))/t
# bFT1p3.v <- function(t) 5*t/4+3
# bFT1p3.vi <- function(t) rep(3,length(t))
# round(t(sapply(nLD,
# function(n) {
# c(n=n,
# i=crossGeneral(tMax=1,h=1/n,cFct=cFT1p3)$G[n],
# ii=crossGeneral(tMax=1,h=1/n,cFct=cFT1p3,bFct=bFT1p3.ii)$G[n],
# iii=crossGeneral(tMax=1,h=1/n,cFct=cFT1p3,bFct=bFT1p3.iii)$G[n],
# v=crossGeneral(tMax=1,h=1/n,cFct=cFT1p3,bFct=bFT1p3.v)$G[n],
# vi=crossGeneral(tMax=1,h=1/n,cFct=cFT1p3,bFct=bFT1p3.vi)$G[n])})),
# digits=6)
#
# ## Part 3: c(t) = t^2 + 3*t + 1 and tMax=1
# ## define cFct
# cFT1p4 <- function(t) 1/t
# ## Here only column (i) and (vii) are reproduced.
# ## If one attempts to reproduce (ii) directly with crossGeneral
# ## a NaN appears (when a -Inf is the correct value) in functions
# ## F() and K(,) (see details) for instance when t=0 in F.
# ## Then as crossGeneral is presently written R attempts to
# ## compute t*b(t), where b(t) is c'(t), that is, t*(-1/t^2) which is
# ## NaN (for R) when t=0.
# bFT1p4.vii <- function(t) rep(-1,length(t))
# round(t(sapply(nLD,
# function(n) {
# c(n=n,
# i=crossGeneral(tMax=1,h=1/n,cFct=cFT1p4)$G[n],
# vii=crossGeneral(tMax=1,h=1/n,cFct=cFT1p4,bFct=bFT1p4.vii)$G[n])})),
# digits=6)
# ## The last 3 rows of column (vii) are not the same as in the paper
#
# ## Reproduce Table 4 (p 104) of Loader and Deely (1987)
# ## As before the probability of first passage between
# ## 0 and 1 is computed. This time only three boundary
# ## functions are considered. The error bounds are
# ## obtained
#
# ## Part 1: c(t) = sqrt(1+t)
# ## Left columns pair: b(t) = c'(t)
# round(t(sapply(nLD,
# function(n) {
# res <- crossGeneral(tMax=1,h=1/n,cFct=cFT1p1,bFct=bFT1p1.ii,withBounds=TRUE,Lplus=TRUE)
# c(Gl=res$Gl[n],Gu=res$Gu[n])
# }
# )
# ),
# digits=5)
#
# ## Right columns pair: b(t) = 0
# round(t(sapply(nLD,
# function(n) {
# res <- crossGeneral(tMax=1,h=1/n,cFct=cFT1p1,withBounds=TRUE,Lplus=TRUE)
# c(n=n,Gl=res$Gl[n],Gu=res$Gu[n])
# }
# )
# ),
# digits=5)
#
# ## Part 2: c(t) = t^2 + 3*t + 1
# ## Left columns pair: b(t) = 3 - 2*t
# round(t(sapply(nLD,
# function(n) {
# res <- crossGeneral(tMax=1,h=1/n,cFct=cFT1p3,bFct=function(t) 3-2*t,withBounds=TRUE,Lplus=TRUE)
# c(n=n,Gl=res$Gl[n],Gu=res$Gu[n])
# }
# )
# ),
# digits=5)
#
# ## Right columns pair: b(t) = 3 - t
# round(t(sapply(nLD,
# function(n) {
# res <- crossGeneral(tMax=1,h=1/n,cFct=cFT1p3,bFct=function(t) 3-2*t,withBounds=TRUE,Lplus=TRUE)
# c(n=n,Gl=res$Gl[n],Gu=res$Gu[n])
# }
# )
# ),
# digits=5)
#
# ## Part 3: c(t) = 1 + sin(t)
# ## Left columns pair: b(t) = c'(t)
# round(t(sapply(nLD,
# function(n) {
# res <- crossGeneral(tMax=1,h=1/n,cFct=function(t) 1+sin(t),bFct=function(t) cos(t),withBounds=TRUE,Lplus=TRUE)
# c(n=n,Gl=res$Gl[n],Gu=res$Gu[n])
# }
# )
# ),
# digits=5)
#
# ## Left columns pair: b(t) = 0.5
# round(t(sapply(nLD,
# function(n) {
# res <- crossGeneral(tMax=1,h=1/n,cFct=function(t) 1+sin(t),bFct=function(t) rep(0.5,length(t)),withBounds=TRUE,Lplus=TRUE)
# c(n=n,Gl=res$Gl[n],Gu=res$Gu[n])
# }
# )
# ),
# digits=5)
#
#
# ## Check crossGeneral against an analytical inverse Gaussian
# ## distribution
# ## Define inverse Gaussian parameters
# mu.true <- 0.075
# sigma2.true <- 3
# ## Define a function transforming the "drift" (mu.true) and
# ## "noise variance" (sigma2.true) of the default inverse
# ## Gaussian parametrization of STAR into a
# ## linear boundary of an equivalent Wiener process first
# ## passage time problem
# star2ld <- function(mu,sigma2) c(sqrt(1/sigma2),-sqrt(1/sigma2)/mu)
# ## Get the "equivalent" boundary parameters (y intercept and slope)
# parB1 <- star2ld(mu.true,sigma2.true)
# ## Plot the "target" inverse Gaussian density
# xx <- seq(0.001,0.3,0.001)
# plot(xx,dinvgauss(xx,mu=mu.true,sigma2=sigma2.true),type="l")
# ## Get the numerical estimate of the density using Loader and
# ## Deely Volterra integral equation method
# igB1 <- crossGeneral(tMax=0.3,h=0.001,cFct=function(t) parB1[1]+parB1[2]*t,withBounds=FALSE)
# ## superpose the numerical estimate to the exact solution
# ## use lines method to do that
# lines(igB1,"density",col=2)
#
# ## Use of crossTight and associated function
# ## Get the paramters, a and b, of the "approximate"
# ## tightest boundary: c(t) = a + b*sqrt(t), giving a
# ## 0.05 probability of exit between 0 and 1
# ## (in fact we are discussing here a pair of symmetrical
# ## bounaries, c(t) and -c(t)). See Kendall et al (2007)
# ## for details
# ## Start by defining the target function
# target95 <- mkTightBMtargetFct(ci=0.95)
# ## get the optimal log(a) and log(b) using
# ## the values of table 1 of Kendall et al as initial
# ## guesses
# p95 <- optim(log(c(0.3,2.35)),target95,method="BFGS")
# ## check the convergence of BFGS
# p95$convergence
# ## check if the parameters changed a lot
# exp(p95$par)
# ## Get the bounds on G(1) for these optimal parameters
# d95 <- crossTight(a=exp(p95$par[1]),b=exp(p95$par[2]),withBound=TRUE,logScale=FALSE)
# ## print out the summary
# summary(d95)
# ## Do the same for the 0.01 probability of first passage
# target99 <- mkTightBMtargetFct(ci=0.99)
# p99 <- optim(p95$par,target99,method="BFGS")
# p99$convergence
# exp(p99$par)
# d99 <- crossTight(a=exp(p99$par[1]),b=exp(p99$par[2]),withBound=TRUE,logScale=FALSE)
# summary(d99)
# ## End(Not run)
Run the code above in your browser using DataLab