Learn R Programming

STAR (version 0.3-7)

dllogis: The Log Logistic Distribution

Description

Density, distribution function, quantile function, and random generation for the log logistic.

Usage

dllogis(x, location = 0, scale = 1, log = FALSE) pllogis(q, location = 0, scale = 1, lower.tail = TRUE, log.p = FALSE) qllogis(p, location = 0, scale = 1, lower.tail = TRUE, log.p = FALSE) rllogis(n, location = 0, scale = 1)

Arguments

x, q
vector of quantiles.
p
vector of probabilities.
n
number of observations. If length(n) > 1, the length is taken to be the number required.
location, scale
location and scale parameters (non-negative numeric).
lower.tail
logical; if TRUE (default), probabilities are P[X <= x]<="" code="">, otherwise, P[X > x].
log, log.p
logical; if TRUE, probabilities p are given as log(p).

Value

dllogis gives the density, pllogis gives the distribution function, qllogis gives the quantile function and rllogis generates random deviates.

Details

If location or scale are omitted, they assume the default values of 0 and 1 respectively.

The log-Logistic distribution with location = m and scale = s has distribution function

$$\mathrm{F}(x) = \frac{1}{1+ \exp(-\frac{\log (x) - m}{s})}$$

and density

$$\mathrm{f}(x)=\frac{1}{s \, x} \frac{\exp (-\frac{\log (x) - m}{s})}{(1+ \exp(-\frac{\log (x) - m}{s}))^2}$$

References

Lindsey, J.K. (2004) Introduction to Applied Statistics: A Modelling Approach. OUP.

Lindsey, J.K. (2004) The Statistical Analysis of Stochastic Processes in Time. CUP.

See Also

llogisMLE, Lognormal, hllogis

Examples

Run this code
## Not run: 
# tSeq <- seq(0.001,0.6,0.001)
# location.true <- -2.7
# scale.true <- 0.025
# Yd <- dllogis(tSeq, location.true, scale.true)
# Yh <- hllogis(tSeq, location.true, scale.true)
# max.Yd <- max(Yd)
# max.Yh <- max(Yh)
# Yd <- Yd / max.Yd
# Yh <- Yh / max.Yh
# oldpar <- par(mar=c(5,4,4,4))
# plot(tSeq, Yd, type="n", axes=FALSE, ann=FALSE,
#      xlim=c(0,0.6), ylim=c(0,1))
# axis(2,at=seq(0,1,0.2),labels=round(seq(0,1,0.2)*max.Yd,digits=2))
# mtext("Density (1/s)", side=2, line=3)
# axis(1,at=pretty(c(0,0.6)))
# mtext("Time (s)", side=1, line=3)
# axis(4, at=seq(0,1,0.2), labels=round(seq(0,1,0.2)*max.Yh,digits=2))
# mtext("Hazard (1/s)", side=4, line=3, col=2)
# mtext("Log Logistic Density and Hazard Functions", side=3, line=2,cex=1.5)
# lines(tSeq,Yd)
# lines(tSeq,Yh,col=2)
# par(oldpar)
# ## End(Not run)

Run the code above in your browser using DataLab