
lockedTrain
object using a smoothing spline
(gssanova
or gssanova0
) with the Poisson
family after binning the object.
gsslockedTrain(lockedTrain, bw = 0.001, ...)
gsslockedTrain0(lockedTrain, bw = 0.001, ...)
"print"(x, ...)
"print"(x, ...)
"summary"(object, ...)
"summary"(object, ...)
"plot"(x, xlab, ylab, main, xlim, ylim, col, lwd, ...)
"plot"(x, xlab, ylab, main, xlim, ylim, col, lwd, ...)
lockedTrain
object.gsslockedTrain
or a gsslockedTrain0
object.gsslockedTrain
or a gsslockedTrain0
object.plot
.plot
.plot
.plot
.plot
.plot
.plot
.gsslockedTrain
, respectively gsslockedTrain0
, the
... are passed to the internally called gssanova
, repectively
gssanova0
. Not used in print.gsslockedTrain
and
summary.gsslockedTrain
and their counterparts for
gsslockedTrain0
objects. Passed to plot
in
plot.gsslockedTrain
and plot.gsslockedTrain0
.gsslockedTrain
, respectively gsslockedTrain0
, is returned by
gsslockedTrain
, respectively gsslockedTrain0
. These
lists have the following components:
gss
object generated by
gssanova
or gssanova0
.hist.lockedTrain
.hist.lockedTrain
.TRUE
if a cross-intensity was
estimated and FALSE
in the case of an auto-intensity.print.gsslockedTrain
returns the result of print
applied to the gssanova
object generated by gsslockedTrain
and stored in the the component gssFit
of its argument. The
same goes for print.gsslockedTrain0
.summary.gsslockedTrain
returns the result of summary.gssanova
applied to the gssanova
object generated by gsspsth
and stored in the component gssFit
of its argument. The
same goes for summary.gsslockedTrain0
.gsslockedTrain
calls internally gssanova
while
gsslockedTrain0
calls gssanova0
. See the respective
documentations and references therein for an explanation of the differences.
gsslockedTrain
and gsslockedTrain0
essentially generate
a smooth version of the
histogram obtained by hist.lockedTrain
. The Idea is to
build the histogram first with a "too" small bin width before fitting
a regression spline to it with a Poisson distribution of the observed
counts.
lockedTrain
,
plot.lockedTrain
,
gssanova
,
gssanova0
## Not run:
# ## load e070528spont data set
# data(e070528spont)
# ## create a lockedTrain object with neuron 1 as reference
# ## and neuron 3 as test up to lags of +/- 250 ms
# lt1.3 <- lockedTrain(e070528spont[[1]],e070528spont[[3]],laglim=c(-1,1)*0.25)
# ## look at the cross raster plot
# lt1.3
# ## build a histogram of it using a 10 ms bin width
# hist(lt1.3,bw=0.01)
# ## do it the smooth way
# slt1.3 <- gsslockedTrain(lt1.3)
# plot(slt1.3)
# ## do some check on the gss fit
# summary(slt1.3)
#
# ## do the same with gsslockedTrain0
# slt1.3 <- gsslockedTrain0(lt1.3)
# plot(slt1.3)
# ## do some check on the gss fit
# summary(slt1.3)
# ## End(Not run)
Run the code above in your browser using DataLab