## Not run:
# ## load spontaneous data of 1 Purkinje cell
# ## recorded in cell attached mode from a cerebellar
# ## slice in control and bath applied bicuculline conditions
# data(sPK)
# ## coerce data to spikeTrain objects
# sPK <- lapply(sPK,as.spikeTrain)
# ## Get a summary of the ctl data
# summary(sPK[["ctl"]])
# ## Look at the control train
# ## Don't show the rug plot for clarity
# plot(sPK[["ctl"]],addRug=FALSE)
# ## Generate the renewal test plot taking into account
# ## the size of the data set (a lot of spikes!).
# renewalTestPlot(sPK[["ctl"]],d=10,orderPlotPch=".",lag.max=250)
# ## Get a summary of the bicu data
# summary(sPK[["bicu"]])
# ## Look at the control train
# ## Don't show the rug plot for clarity
# plot(sPK[["bicu"]],addRug=FALSE)
# ## Generate the renewal test plot taking into account
# ## the size of the data set (a lot of spikes!).
# renewalTestPlot(sPK[["bicu"]],d=10,orderPlotPch=".",lag.max=250);par(oldpar)
# ## This time the data are NOT stationary. This is seen clearly on a acf
# ## plot with very large lag.max
# acf.spikeTrain(sPK[["bicu"]],lag.max=2000)
#
# ## End(Not run)
Run the code above in your browser using DataLab