Learn R Programming

STCCGEV (version 1.0.0)

simul_fun_generalized_2d: A Special Case of simulation_generalized in 2 Dimensions

Description

A Special Case of simulation_generalized in 2 Dimensions

Usage

simul_fun_generalized_2d(
  nsim,
  n_train,
  n_test,
  copula,
  init_params,
  fn,
  u1,
  u2,
  z1_train,
  z2_train,
  X_t,
  y1_test,
  y2_test,
  BSTS_1,
  BSTS_2
)

Value

A list containing:

theta_simulated

Simulated copula parameters across replications.

y1_simulated

Simulated values for the first response variable.

y2_simulated

Simulated values for the second response variable.

MSE

Mean squared error for each simulation run.

optim_results

Results from the optimization process.

Arguments

nsim

Integer, number of simulation replications.

n_train

Integer, number of training observations.

n_test

Integer, number of test observations.

copula

Character, specifying the copula type: "Clayton", "Frank", "Gumbel", "Joe", or "Gaussian".

init_params

Numeric vector, initial parameter values for optimization.

fn

Function, log-likelihood function for parameter estimation.

u1

Numeric vector (n_train), first pseudo-observation for the copula.

u2

Numeric vector (n_train), second pseudo-observation for the copula.

z1_train

Numeric matrix (n_train x M), observed data for the first margin.

z2_train

Numeric matrix (n_train x M), observed data for the second margin.

X_t

Numeric matrix (n_train x M), risk factors for the dynamic copula parameter.

y1_test

Numeric vector (n_test), true future values for the first response variable.

y2_test

Numeric vector (n_test), true future values for the second response variable.

BSTS_1

Fitted BSTS model for the first response variable.

BSTS_2

Fitted BSTS model for the second response variable.