Learn R Programming

SUMMER (version 2.0.0)

simSPDE: Simulate from the SPDE spatial model

Description

Generates nCoords x nsim matrix of simulated values of the SPDE spatial process

Usage

simSPDE(
  coords,
  nsim = 1,
  mesh,
  eff.range = (max(coords[, 1]) - min(coords[, 1]))/3,
  marg.var = 1,
  inla.seed = 0L
)

Arguments

coords

2 column matrix of spatial coordinates at which to simulate the spatial process

nsim

number of draws from the SPDE model

mesh

SPDE mesh

eff.range

effective spatial range

marg.var

marginal variance of the spatial process

inla.seed

seed input to inla.qsample. 0L sets seed intelligently, positive value sets a specific seed, negative value keeps existing RNG

Author

John Paige

Details

[Experimental]

References

Lindgren, F., Rue, H., Lindström, J., 2011. An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic differential equation approach (with discussion). Journal of the Royal Statistical Society, Series B 73, 423–498.

Examples

Run this code
if (FALSE) {
set.seed(123)
require(INLA)
coords = matrix(runif(10*2), ncol=2)
mesh = inla.mesh.2d(loc.domain=cbind(c(0, 0, 1, 1), c(0, 1, 0, 1)), 
  n=3000, max.n=5000, max.edge=c(.01, .05), offset=-.1)
simVals = simSPDE(coords, nsim=1, mesh, eff.range=.2, inla.seed=1L)
}

Run the code above in your browser using DataLab