Learn R Programming

SVM2CRM (version 1.4.0)

getSignal: Model the signals of each histone marks around genomic features (e.g. enhancers, not_enhancers).

Description

This function simply model the signal of each histone marks around the features used in the input files and considering the bin.size and window size defined during the pre-processing step.

Usage

getSignal(bedfilelist,chr,reference,win.size,bin.size,label1="enhancers")

Arguments

bedfilelist
test_set produced for svm model
chr
a vector containin the list of chromsome that you want use during the analysis (e.g."chr1")
reference
file with the reference position of the features. The genomic coordinates of positive and negative examples (e.g. enhancers, not_enhancers)
win.size
windows size used to smooth the signal
bin.size
original bin size used
label1
class of reference (e.g. enhancers or not_enhancers)

Value

A data.frame with the signals where in the column there are the signals of the histone marks and in the rows the cis-regulatory elements.

Details

Some detailled description

See Also

cisREfindbed

Examples

Run this code
    library("SVM2CRMdata")
    library("GenomicRanges")

    setwd(system.file("data",package="SVM2CRMdata"))
    load("CD4_matrixInputSVMbin100window1000.rda")
    completeTABLE<-CD4_matrixInputSVMbin100window1000

    new.strings<-gsub(x=colnames(completeTABLE[,c(6:ncol(completeTABLE))]),pattern="CD4.",replacement="")
    new.strings<-gsub(new.strings,pattern=".norm.w100.bed",replacement="")
    colnames(completeTABLE)[c(6:ncol(completeTABLE))]<-new.strings

    #list_file<-grep(dir(),pattern=".sort.txt",value=TRUE)
    #train_positive<-getSignal(list_file,chr="chr1",reference="p300.distal.fromTSS.txt",win.size=500,bin.size=100,label1="enhancers")
    #train_negative<-getSignal(list_file,chr="chr1",reference="random.region.hg18.nop300.txt",win.size=500,bin.size=100,label1="not_enhancers")
    setwd(system.file("data",package="SVM2CRMdata"))
    load("train_positive.rda")
    load("train_negative.rda")
    training_set<-rbind(train_positive,train_negative)
    colnames(training_set)[c(5:ncol(training_set))]<-gsub(x=gsub(x=colnames(training_set[,c(5:ncol(training_set))]),pattern="sort.txt.",replacement=""),pattern="CD4.",replacement="")

Run the code above in your browser using DataLab