library("GenomicRanges")
        library("SVM2CRMdata")
        setwd(system.file("data",package="SVM2CRMdata"))
        load("CD4_matrixInputSVMbin100window1000.rda")
        completeTABLE<-CD4_matrixInputSVMbin100window1000
        new.strings<-gsub(x=colnames(completeTABLE[,c(6:ncol(completeTABLE))]),pattern="CD4.",replacement="")
        new.strings<-gsub(new.strings,pattern=".norm.w100.bed",replacement="")
        colnames(completeTABLE)[c(6:ncol(completeTABLE))]<-new.strings
        #list_file<-grep(dir(),pattern=".sort.txt",value=TRUE)
        #train_positive<-getSignal(list_file,chr="chr1",reference="p300.distal.fromTSS.txt",win.size=500,bin.size=100,label1="enhancers")
        #train_negative<-getSignal(list_file,chr="chr1",reference="random.region.hg18.nop300.txt",win.size=500,bin.size=100,label1="not_enhancers")
        setwd(system.file("data",package="SVM2CRMdata"))
        load("train_positive.rda")
        load("train_negative.rda")
        training_set<-rbind(train_positive,train_negative)
        #the colnames of the training set should be the same of data_enhancer_svm
        colnames(training_set)[c(5:ncol(training_set))]<-gsub(x=gsub(x=colnames(training_set[,c(5:ncol(training_set))]),pattern="sort.txt.",replacement=""),pattern="CD4.",replacement="")
        setwd(system.file("extdata", package = "SVM2CRMdata"))
        data_level2 <- read.table(file = "GSM393946.distal.p300fromTSS.txt",sep = "\t", stringsAsFactors = FALSE)
        data_level2<-data_level2[data_level2[,1]=="chr1",]
        DB <- data_level2[, c(1:3)]
        colnames(DB)<-c("chromosome","start","end")
        label <- "p300"
        table.final.overlap<-findFeatureOverlap(query=completeTABLE,subject=DB,select="all")
        data_enhancer_svm<-createSVMinput(inputpos=table.final.overlap,inputfull=completeTABLE,label1="enhancers",label2="not_enhancers")
        colnames(data_enhancer_svm)[c(5:ncol(data_enhancer_svm))]<-gsub(gsub(x=colnames(data_enhancer_svm[,c(5:ncol(data_enhancer_svm))]),pattern="CD4.",replacement=""),pattern=".norm.w100.bed",replacement="")
        listcolnames<-c("H2AK5ac","H2AK9ac","H3K23ac","H3K27ac","H3K27me3","H3K4me1","H3K4me3")
        dftotann<-smoothInputFS(train_positive[,c(6:ncol(train_positive))],listcolnames,k=20)
        results<-featSelectionWithKmeans(dftotann,5)
        resultsFS<-results[[7]]
	resultsFSfilter<-resultsFS[which(resultsFS[,2]>median(resultsFS[,2])),]
        resultsFSfilterICRR<-resultsFSfilter[which(resultsFSfilter[,3]<0.50),]
        listHM<-resultsFSfilterICRR[,1]
        listHM<-gsub(gsub(listHM,pattern="_.",replacement=""),pattern="CD4.",replacement="")
        selectFeature<-grep(x=colnames(training_set[,c(6:ncol(training_set))]),pattern=paste(listHM,collapse="|"),value=TRUE)
        colSelect<-c("chromosome","start","end","label",selectFeature)
        training_set<-training_set[,colSelect]
        vecS <- c(2:length(listHM))
        typeSVM <- c(0, 6, 7)[1]
        costV <- c(0.001, 0.01, 0.1, 1, 10, 100, 1000)[6]
        wlabel <- c("not_enhancer", "enhancer")
        infofile<-data.frame(a=c(paste(listHM,"signal",sep=".")))
        infofile[,1]<-gsub(gsub(x=infofile[,1],pattern="CD4.",replacement=""),pattern=".sort.bed",replacement="")
        tuningTAB <- tuningParametersCombROC(training_set = training_set, typeSVM = typeSVM, costV = costV,different.weight="TRUE", vecS = vecS[1],pcClass=100,ncClass=400,infofile)
        tuningTABfilter<-tuningTAB[tuningTAB$fscore<0.95,]
        #row_max_fscore<-which.max(tuningTABfilter[tuningTABfilter$nHM >2,"fscore"])
        row_max_fscore<-which.max(tuningTABfilter[,"fscore"])
        listHM_prediction<-gsub(tuningTABfilter[row_max_fscore,4],pattern="//",replacement="|")
        columnPR<-grep(colnames(training_set),pattern=paste(listHM_prediction,collapse="|"),value=TRUE)
        predictionGW(training_set=training_set,data_enhancer_svm=data_enhancer_svm, listHM=columnPR,pcClass.string="enhancers",nClass.string="not_enhancers",pcClass=100,ncClas=400,cost=100,type=0,"prediction_enhancers_CD4_results_cost=100_type=0")
Run the code above in your browser using DataLab