Learn R Programming

SegCorr (version 1.2)

SegCorr-package: Detecting Correlated Genomic Regions

Description

Performs correlation matrix segmentation and applies a test procedure to detect highly correlated regions in gene expression. The segmentation procedure detects changes in the patterns of the gene expression correlation matrix. The test procedure asseses which regions exhibit a significantly high level of correlation. Additionally, a preprocessing procedure is provided to correct gene expression for copy number variation.

Arguments

Details

Package: SegCorr
Type: Package
Version: 1.2
Date: 2015-01-19
License: GPL-2

References

Delatola E. I., Lebarbier E., Mary-Huard T., Radvanyi F., Robin S., Wong J.(2017). SegCorr: a statistical procedure for the detection of genomic regions of correlated expression. BMC Bioinformatics, 18:333.

See Also

Fpsn

Examples

Run this code
# NOT RUN {
#data.sets = c('SNP','EXP_raw')
## Each gene corresponds to one SNP probe ##
#Position_EXP = matrix(1:1000,nrow=500,byrow=TRUE)
#Position_SNP = seq(2,1000,by=2)
#data(list=data.sets)
#CHR = rep(1,dim(EXP_raw)[1])
#SNP.CHR = rep(1,dim(SNP)[1])

#results = SegCorr(CHR = CHR, EXP = EXP_raw, CNV = TRUE, SNPSMOOTH=TRUE,
#Position.EXP = Position_EXP, SNP.CHR = SNP.CHR, SNP=SNP , Position.SNP = Position_SNP)

################drawing the heatmap for one region ###########################
#tau = results$Region.List[1,2]: results$Region.List[1,3]
#EXP.CNV =  results$EXP.corrected
#heatmap(EXP.CNV[tau,])

# }

Run the code above in your browser using DataLab