Learn R Programming

SemNeT (version 1.4.4)

CN: Community Network Estimation

Description

Estimates a semantic network using the Community Network method described in Goni et al. (2011)

Usage

CN(data, window = 2, alpha = 0.05, enrich = FALSE)

Value

Returns a undirected semantic network

Arguments

data

Matrix or data frame. A preprocessed verbal fluency matrix where rows are participants and columns are verbal fluency responses

window

Numeric. Size of window to look for co-occurences in. Defaults to 2

alpha

Numeric. Significance value. Defaults to .05

enrich

Boolean. Should the network be enriched by connecting all nodes in their respective modules? Defaults to FALSE

Author

Alexander Christensen <alexpaulchristensen@gmail.com>

References

Goni, J., Arrondo, G., Sepulcre, J., Martincorena, I., de Mendizabal, N. V., Corominas-Murtra, B., ... & Villoslada, P. (2011). The semantic organization of the animal category: Evidence from semantic verbal fluency and network theory. Cognitive Processing, 12, 183-196.

Examples

Run this code
# Get data
data <- open.clean

# Organize group data
## Get group data
group <- open.group

## Low and high openness to experience groups
low <- data[which(group == "Low"),]
high <- data[which(group == "High"),]

if (FALSE) {
# Compute networks
low.net <- CN(low)
high.net <- CN(high)
}

Run the code above in your browser using DataLab