Learn R Programming

SemNeT (version 1.4.4)

similarity: Measures of Similarity

Description

Computes several measures of similarity (see Choi, Cha, & Tappert, 2010 for additional measures)

Usage

similarity(
  data,
  method = c("angular", "cor", "cosine", "euclid", "faith", "jaccard", "phi", "rr")
)

Value

A symmetric similarity matrix

Arguments

data

Matrix or data frame. A binarized dataset of verbal fluency or linguistic data

method

Character. Type of similarity measure to compute.

Below are the definitions for each bin:

10
1aba+b(R1)
0cdc+d(R2)
a+cb+da+b+c+d(N)
(C1)(C2)(N)

Options include:

  • "angular" = \(1 - (2 * acos(cosine similarity) / \pi)\)

  • "cosine" = \(a / \sqrt{(a + b)(a + c)}\)

  • "faith" = \(a + 0.5d / a + b + c + d\)

  • "jaccard" = \(a / a + b + c\)

  • "phi" and "cor" = \(ad - bc / \sqrt(R1 x R2 x C1 x C2)\)

  • "rr" = \(a / a + b + c + d\)

Author

Alexander Christensen <alexpaulchristensen@gmail.com>

References

Choi, S. S., Cha, S. H., & Tappert, C. C. (2010). A survey of binary similarity and distance measures. Journal of Systemics, Cybernetics and Informatics, 8, 43-48.

Examples

Run this code
# Simulate Datasets
one <- sim.fluency(10)

# Compute similarity matrix
cos <- similarity(one, method = "cosine")

Run the code above in your browser using DataLab