Learn R Programming

Seurat (version 1.2.1)

jackStraw: Determine statistical significance of PCA scores.

Description

Randomly permutes a subset of data, and calculates projected PCA scores for these 'random' genes. Then compares the PCA scores for the 'random' genes with the observed PCA scores to determine statistical signifance. End result is a p-value for each gene's association with each principal component.

Usage

jackStraw(object, num.pc = 30, num.replicate = 100, prop.freq = 0.01, do.print = FALSE)

Arguments

object
Seurat object
num.pc
Number of PCs to compute significance for
num.replicate
Number of replicate samplings to perform
prop.freq
Proportion of the data to randomly permute for each replicate
do.print
Print the number of replicates that have been processed.

Value

Returns a Seurat object where object@jackStraw.empP represents p-values for each gene in the PCA analysis. If project.pca is subsequently run, object@jackStraw.empP.full then represents p-values for all genes.

References

Inspired by Chung et al, Bioinformatics (2014)