Seurat (version 1.2.1)

pcHeatmap: Principal component heatmap

Description

Draws a heatmap focusing on a principal component. Both cells and genes are sorted by their principal component scores. Allows for nice visualization of sources of heterogeneity in the dataset.

Usage

pcHeatmap(object, pc.use = 1, cells.use = NULL, num.genes = 30, use.full = FALSE, disp.min = -2.5, disp.max = 2.5, do.return = FALSE, col.use = pyCols, use.scale = TRUE, do.balanced = FALSE, remove.key = FALSE, ...)

Arguments

object
Seurat object
pc.use
Principal components to use
cells.use
Cells to include in the heatmap (default is all cells)
num.genes
Number of genes to return
use.full
Use the full PCA (projected PCA). Default i s FALSE
disp.min
Minimum display value (all values below are clipped)
disp.max
Maximum display value (all values above are clipped)
do.return
Default is FALSE. If TRUE, return a matrix of scaled values which would be passed to heatmap.2
col.use
Color palette to use
use.scale
Default is TRUE: plot scaled data. If FALSE, plot raw data on the heatmap.
do.balanced
Return an equal number of genes with both + and - PC scores.
remove.key
Removes the color key from the plot.
...
Additional parameters to heatmap.2. Common examples are cexRow and cexCol, which set row and column text sizes

Value

If do.return==TRUE, a matrix of scaled values which would be passed to heatmap.2. Otherwise, no return value, only a graphical output