Learn R Programming

Seurat (version 1.2.1)

pca: Run Principal Component Analysis on gene expression

Description

Run prcomp for PCA dimensionality reduction

Usage

pca(object, pc.genes = NULL, do.print = TRUE, pcs.print = 5, pcs.store = 40, genes.print = 30, use.imputed = FALSE, ...)

Arguments

object
Seurat object
pc.genes
Genes to use as input for PCA. Default is object@var.genes
do.print
Print the top genes associated with high/low loadings for the PCs
pcs.print
Number of PCs to print genes for
pcs.store
Number of PCs to store
genes.print
Number of genes to print for each PC
use.imputed
Run PCA on imputed values (FALSE by default)
...
Additional arguments to be passed to prcomp

Value

Returns Seurat object with an PCA embedding (object@pca.rot) and gene projection matrix (object@pca.x). The PCA object itself is stored in object@pca.obj[[1]]